py_trees Documentation
Release 0.7.6

Daniel Stonier

Jan 10, 2021

Guide

1 Background

2 Behaviours

3 Composites

4 Decorators

5 Blackboards

6 Trees

7 Visualisation

8 Surviving the Crazy Hospital
9 Terminology

10 FAQ

11 Demos

12 Programs

13 Module API

14 Changelog

15 Indices and tables
Python Module Index

Index

15

19

21

25

29

31

33

35

65

67

105

111

113

115

CHAPTER 1

Background

1.1 Introduction

Note: Behaviour trees are a decision making engine often used in the gaming industry.

Others include hierarchical finite state machines, task networks, scripting engines all of which have various pros and
cons. Behaviour trees sit somewhere in the middle of these allowing you a good blend of purposeful planning towards
goals with enough reactivity to shift in the presence of important events. They are also wonderfully simple to compose.

There’s much information already covering behaviour trees. Rather than regurgitating it here, dig through some of
these first. A good starter is Al GameDev - Behaviour Trees (free signup and login) which puts behaviour trees in
context alongside other techniques. A simpler read is Patrick Goebel’s Behaviour Trees For Robotics. Other readings
are listed at the bottom of this page.

Some standout features of behaviour trees that makes them very attractive:
* Ticking - the ability to rick allows for work between executions without multi-threading
¢ Priority Handling - switching mechansims that allow higher priority interruptions is very natural
* Simplicity - very few core components, making it easy for designers to work with it

* Dynamic - change the graph on the fly, between ticks or from parent behaviours themselves

1.2 Motivation

The driving use case for this package was to implement a higher level decision making layer in robotics, i.e. scenarios
with some overlap into the control layer. Behaviour trees turned out to be a much more apt fit to handle the many
concurrent processes in a robot after attempts with finite state machines became entangled in wiring complexity as the
problem grew in scope.

http://aigamedev.com/insider/presentation/behavior-trees/
http://www.pirobot.org/blog/0030/

py_trees Documentation, Release 0.7.6

Note: There are very few open behaviour tree implementations.

Most of these have either not progressed significantly (e.g. Owyl), or are accessible only in some niche, e.g. Behaviour
Designer, which is a frontend to the trees in the unity framework. Does this mean people do not use them? It is more
probable that most behaviour tree implementations happen within the closed doors of gaming/robot companies.

Youtube - Second Generation of Behaviour Trees is an enlightening video about behaviour trees and the developments
of the last ten years from an industry expert. It also walks you through a simple c++ implementation. His advice?
If you can’t find one that fits, roll your own. It is relatively simple and this way you can flexibly cater for your own
needs.

1.3 Design

The requirements for the previously discussed robotics use case match that of the more general:

Note: Rapid development of medium scale decision engines that don’t need to be real time reactive.

Developers should expect to be able to get up to speed and write their own trees with enough power and flexibility to
adapt the library to their needs. Robotics is a good fit. The decision making layer typically does not grow too large (~
hundreds of behaviours) and does not need to handle the reactive decision making that is usually directly incorporated
into the controller subsystems. On the other hand, it is not scoped to enable an NPC gaming engine with hundreds of
characters and thousands of beahaviours for each character.

This implementation uses all the whizbang tricks (generators, decorators) that python has to offer. Some design
constraints that have been assumed to enable a practical, easy to use framework:

* No interaction or sharing of data between tree instances
* No parallelisation of tree execution

* Only one behaviour initialising or executing at a time

Hint: A c++ version is feasible and may come forth if there’s a need..

1.4 Readings

¢ Al GameDev - Behaviour Trees - from a gaming expert, good big picture view

* Youtube - Second Generation of Behaviour Trees - from a gaming expert, in depth c++ walkthrough (on github).
* Behaviour trees for robotics - by pirobot, a clear intro on its usefulness for robots.

e A Curious Course on Coroutines and Concurrency - generators and coroutines in python.

* Behaviour Trees in Robotics and Al - a rather verbose, but chock full with examples and comparisons with other
approaches.

2 Chapter 1. Background

https://github.com/eykd/owyl
https://forum.unity3d.com/threads/behavior-designer-behavior-trees-for-everyone.227497/
https://forum.unity3d.com/threads/behavior-designer-behavior-trees-for-everyone.227497/
https://www.youtube.com/watch?v=n4aREFb3SsU
http://aigamedev.com/insider/presentation/behavior-trees/
https://www.youtube.com/watch?v=n4aREFb3SsU
http://www.pirobot.org/blog/0030/
http://www.dabeaz.com/coroutines/Coroutines.pdf
https://arxiv.org/pdf/1709.00084.pdf

20

21

22

23

24

CHAPTER 2

Behaviours

A Behaviour is the smallest element in a behaviour tree, i.e. it is the leaf. Behaviours are usually representative of
either a check (am I hungry?), or an action (buy some chocolate cookies).

2.1 Skeleton

Behaviours in py_trees are created by subclassing the Behaviour class. A skeleton with informative comments is
shown below.

doc/examples/skeleton_behaviour.py

import py_ trees
import random

class Foo (py_trees.Behaviour) :

def

def

__init_ (self, name):

wnn
Minimal one—-time initialisation. A good rule of thumb is

to only include the initialisation relevant for being able
to insert this behaviour in a tree for offline rendering to
dot graphs.

Other one-time initialisation requirements should be met via
the setup () method.

moon

super (Foo, self).__init__ (name)

setup(self, timeout):

When is this called?
This function should be either manually called by your program
or indirectly called by a parent behaviour when it's own setup

(continues on next page)

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

py_trees Documentation, Release 0.7.6

(continued from previous page)

def

def

def

method has been called.

If you have vital initialisation here, a useful design pattern
is to put a guard in your initialise() function to barf the
first time your behaviour is ticked if setup has not been
called/succeeded.

What to do here?
Delayed one-time initialisation that would otherwise interfere
with offline rendering of this behaviour in a tree to dot graph.
Good examples include:
— Hardware or driver initialisation
- Middleware initialisation (e.g. ROS pubs/subs/services)

mon

self.logger.debug (" s [Foo::setup()]" % self.name)

initialise(self):

mmmn

When is this called?
The first time your behaviour is ticked and anytime the
status 1is not RUNNING thereafter.

What to do here?
Any initialisation you need before putting your behaviour
to work.

mon

o))

self.logger.debug (" s [Foo::initialise()]" % self.name)

update (self) :
mmn
When is this called?
Every time your behaviour is ticked.

What to do here?

- Triggering, checking, monitoring. Anything...but do not block!

- Set a feedback message

- return a py_trees.Status.[RUNNING, SUCCESS, FAILURE]
self.logger.debug (" %s [Foo::update()]" % self.name)
ready_to_make_a_decision = random.choice ([True, False])
decision = random.choice ([True, False])
if not ready_to_make_a_decision:

return py_trees.Status.RUNNING

elif decision:

self.feedback_message = "We are not bar!"
return py_trees.Status.SUCCESS

else:
self.feedback_message = "Uh oh"

return py_trees.Status.FAILURE

terminate (self, new_status):
wnn
When is this called?
Whenever your behaviour switches to a non-running state.
- SUCCESS || FAILURE : your behaviour's work cycle has finished
— INVALID : a higher priority branch has interrupted, or shutting down

mmn

(continues on next page)

Chapter 2. Behaviours

py_trees Documentation, Release 0.7.6

(continued from previous page)

self.logger.debug (" [Foo::terminate () .terminate ()] [¢5->%s]" % (self.name,
—self.status, new_status))

2.2 Lifecycle

Getting a feel for how this works in action can be seen by running the py-trees-demo-behaviour-lifecycle program
(click the link for more detail and access to the sources):

Important points to focus on:
e The initialise () method kicks in only when the behaviour is not already running

e The parent tick () method is responsible for determining when to call initialise (), stop() and
terminate () methods.

* The parent ¢ i ck () method always calls update()

e The update () method is responsible for deciding the behaviour Status.

2.3 Initialisation

With no less than three methods used for initialisation, it can be difficult to identify where your initialisation code
needs to lurk.

Note: ___init__ should instantiate the behaviour sufficiently for offline dot graph generation

Later we’ll see how we can render trees of behaviours in dot graphs. For now, it is sufficient to understand that you
need to keep this minimal enough so that you can generate dot graphs for your trees from something like a CI server
(e.g. Jenkins). This is a very useful thing to be able to do.

* No hardware connections that may not be there, e.g. usb lidars
* No middleware connections to other software that may not be there, e.g. ROS pubs/subs/services

* No need to fire up other needlessly heavy resources, e.g. heavy threads in the background

Note: setup handles all other one-time initialisations of resources that are required for execution

Essentially, all the things that the constructor doesn’t handle - hardware connections, middleware and other heavy
resources.

Note: initialise configures and resets the behaviour ready for (repeated) execution

Initialisation here is about getting things ready for immediate execution of a task. Some examples:
* Initialising/resetting/clearing variables
e Starting timers

* Just-in-time discovery and establishment of middleware connections

2.2. Lifecycle 5

py_trees Documentation, Release 0.7.6

* Sending a goal to start a controller running elsewhere on the system

2.4 Status

The most important part of a behaviour is the determination of the behaviour’s status in the update () method. The
status gets used to affect which direction of travel is subsequently pursued through the remainder of a behaviour tree.
We haven’t gotten to trees yet, but it is this which drives the decision making in a behaviour tree.

class py_trees.common.Status
An enumerator representing the status of a behaviour

FAILURE = 'FAILURE'
Behaviour check has failed, or execution of its action finished with a failed result.

INVALID = 'INVALID'
Behaviour is uninitialised and inactive, i.e. this is the status before first entry, and after a higher priority
switch has occurred.

RUNNING = 'RUNNING'
Behaviour is in the middle of executing some action, result still pending.

SUCCESS = 'SUCCESS'
Behaviour check has passed, or execution of its action has finished with a successful result.

The update () method must return one of RUNNING. SUCCESS or FAILURE. A status of INVALID is the initial
default and ordinarily automatically set by other mechansims (e.g. when a higher priority behaviour cancels the
currently selected one).

2.5 Feedback Message

def initialise(self):

mon

Reset a counter variable.

mnn

A behaviour has a naturally built in feedback message that can be cleared in the initialise () or terminate ()
methods and updated in the update () method.

Tip: Alter a feedback message when significant events occur.

The feedback message is designed to assist in notifying humans when a significant event happens or for deciding
when to log the state of a tree. If you notify or log every tick, then you end up with alot of noise sorting through an
abundance of data in which nothing much is happening to find the one point where something significant occurred that
led to surprising or catostrophic behaviour.

Setting the feedback message is usually important when something significant happens in the RUNNING state or to
provide information associated with the result (e.g. failure reason).

Example - a behaviour responsible for planning motions of a character is in the RUNNING state for a long period of
time. Avoid updating it with a feedback message at every tick with updated plan details. Instead, update the message
whenever a significant change occurs - e.g. when the previous plan is re-planned or pre-empted.

6 Chapter 2. Behaviours

py_trees Documentation, Release 0.7.6

2.6 Loggers

These are used throughout the demo programs. They are not intended to be for anything heavier than debugging simple
examples. This kind of logging tends to get rather heavy and requires alot of filtering to find the points of change that
you are interested in (see comments about the feedback messages above).

2.7 Complex Example

The py-trees-demo-action-behaviour program demonstrates a more complicated behaviour that illustrates a few con-
cepts discussed above, but not present in the very simple lifecycle Counter behaviour.

* Mocks an external process and connects to it in the setup method
* Kickstarts new goals with the external process in the initialise method
* Monitors the ongoing goal status in the update method

* Determines RUNNING/SUCCESS pending feedback from the external process

Note: A behaviour’s update () method never blocks, at most it just monitors the progress and holds up any decision
making required by a tree that is ticking the behaviour by setting it’s status to RUNNING. At the risk of being confusing,
this is what is generally referred to as a blocking behaviour.

2.8 Meta Behaviours

Attention: This module is the least likely to remain stable in this package. It has only received cursory attention
so far and a more thoughtful design for handling behaviour ‘hats’ might be needful at some point in the future.

Meta behaviours are created by utilising various programming techniques pulled from a magic bag of tricks. Some
of these minimise the effort to generate a new behaviour while others provide mechanisms that greatly expand your
library of usable behaviours without having to increase the number of explicit behaviours contained therein. The latter
is achieved by providing a means for behaviours to wear different ‘hats’ via python decorators.

1

Each function or decorator listed below includes its own example code demonstrating its use.
Factories

* py_trees.meta.create_behaviour_from function()

* py_trees.meta.create_imposter ()
Decorators (Hats)

* py_trees.meta.condition()

2.6. Loggers 7

py_trees Documentation, Release 0.7.6

* py_trees.
* py_trees.

* py_trees.

* py_trees

* py_trees.
* py_trees.
* py_trees.
* py_trees.

* py_trees.

meta.

meta.

meta.

.meta

meta.

meta.

meta.

meta.

meta.

inverter()
failure_is_running/()

failure_ is_success ()

.oneshot ()

running_is_failure ()
running_1is_success ()
success_1s _failure ()
success_1is_running()

timeout ()

Chapter 2. Behaviours

CHAPTER 3

Composites

Composites are the factories and decision makers of a behaviour tree. They are responsible for shaping the branches.

Sequence - . / Parallel /

Tip: You should never need to subclass or create new composites.

Most patterns can be achieved with a combination of the above. Adding to this set exponentially increases the com-
plexity and subsequently making it more difficult to design, introspect, visualise and debug the trees. Always try
to find the combination you need to achieve your result before contemplating adding to this set. Actually, scratch
that. . . just don’t contemplate it!

Composite behaviours typically manage children and apply some logic to the way they execute and return a result,
but generally don’t do anything themselves. Perform the checks or actions you need to do in the non-composite
behaviours.

* Sequence: execute children sequentially

* Selector: select a path through the tree, interruptible by higher priorities
* Chooser: like a selector, but commits to a path once started until it finishes
e Parallel: manage children concurrently

The subsections below introduce each composite briefly. For a full listing of each composite’s methods, visit the
py_trees.composites module api documentation.

py_trees Documentation, Release 0.7.6

Tip: First time through, make sure to follow the link through to relevant demo programs.

3.1 Sequence

class py_trees.composites.Sequence (name="Sequence’, children=None, *args, **kwargs)
Sequences are the factory lines of Behaviour Trees

Sequence

Guard

A sequence will progressively tick over each of its children so long as each child returns SUCCESS. If any child
returns FATLURE or RUNNING the sequence will halt and the parent will adopt the result of this child. If it
reaches the last child, it returns with that result regardless.

Note: The sequence halts once it sees a child is RUNNING and then returns the result. It does not get stuck in
the running behaviour.

See also:

The py-trees-demo-sequence program demos a simple sequence in action.

Parameters
* name (str) — the composite behaviour name
e children ([Behaviour]) - list of children to add
* xargs — variable length argument list

* xxkwargs — arbitrary keyword arguments

3.2 Selector

class py_trees.composites.Selector (name="Selector’, children=None, *args, **kwargs)
Selectors are the Decision Makers

10 Chapter 3. Composites

py_trees Documentation, Release 0.7.6

High Priority Med Priority

A selector executes each of its child behaviours in turn until one of them succeeds (at which point it itself returns
RUNNING or SUCCESS, or it runs out of children at which point it itself returns AT L,URE. We usually refer to
selecting children as a means of choosing between priorities. Each child and its subtree represent a decreasingly
lower priority path.

Note: Switching from a low -> high priority branch causes a stop(INVALID) signal to be sent to the previously
executing low priority branch. This signal will percolate down that child’s own subtree. Behaviours should
make sure that they catch this and destruct appropriately.

Make sure you do your appropriate cleanup in the terminate () methods! e.g. cancelling a running goal, or
restoring a context.

See also:

The py-trees-demo-selector program demos higher priority switching under a selector.

Parameters
* name (str) — the composite behaviour name
e children ([Behaviour]) - list of children to add
* xargs — variable length argument list

* xxkwargs — arbitrary keyword arguments

3.3 Chooser

class py_trees.composites.Chooser (name="Chooser’, children=None, *args, **kwargs)
Choosers are Selectors with Commitment

3.3. Chooser 11

py_trees Documentation, Release 0.7.6

High Priority Med Priority Low Priority

A variant of the selector class. Once a child is selected, it cannot be interrupted by higher priority siblings. As
soon as the chosen child itself has finished it frees the chooser for an alternative selection. i.e. priorities only
come into effect if the chooser wasn’t running in the previous tick.

Note: This is the only composite in py_trees that is not a core composite in most behaviour tree implementa-
tions. Nonetheless, this is useful in fields like robotics, where you have to ensure that your manipulator doesn’t
drop it’s payload mid-motion as soon as a higher interrupt arrives. Use this composite sparingly and only if you
can’t find another way to easily create an elegant tree composition for your task.

Parameters
* name (str) — the composite behaviour name
e children ([Behaviour]) - list of children to add
* xargs — variable length argument list

* xxkwargs — arbitrary keyword arguments

3.4 Parallel

class py_trees.composites.Parallel (name="Parallel’, policy=<ParallelPolicy.SUCCESS_ON_ALL:
'SUCCESS_ON_ALL’>, children=None, *args,
**kwargs)
Parallels enable a kind of concurrency

12 Chapter 3. Composites

py_trees Documentation, Release 0.7.6

Parallel

Ticks every child every time the parallel is run (a poor man’s form of paralellism).
e Parallels will return FATLURE if any child returns FATLURE

e Parallels with policy SUCCESS_ON_ONE return SUCCESS if at least one child returns SUCCESS and
others are RUNNING.

e Parallels with policy SUCCESS_ON_ALL only returns SUCCESS if all children return SUCCESS
See also:

The py-trees-demo-context-switching program demos a parallel used to assist in a context switching scenario.

Parameters
* name (str) — the composite behaviour name
* policy (ParallelPolicy)— policy to use for deciding success or otherwise
e children ([Behaviour]) - list of children to add
* xargs — variable length argument list

* xxkwargs — arbitrary keyword arguments

3.4. Parallel 13

py_trees Documentation, Release 0.7.6

14 Chapter 3. Composites

CHAPTER 4

Decorators

Decorators are behaviours that manage a single child and provide common modifications to their under-
lying child behaviour (e.g. inverting the result). i.e. they provide a means for behaviours to wear different
‘hats’ depending on their context without a behaviour tree.

!

An example:

15

py_trees Documentation, Release 0.7.6

Life

Have a Beer!

#!/usr/bin/env python

import py_trees.decorators
import py_trees.display

if name == '_ _main

root = py_trees.composites.Sequence (name="Life™)

timeout = py_trees.decorators.Timeout (
name="Timeout",
child=py_trees.behaviours.Success (name="Have a Beer!")

)

failure_is_success = py_trees.decorators.Inverter (
name="Inverter",
child=py_trees.behaviours.Success (name="Busy?")
)

root.add_children([failure_is_success, timeout])

py_trees.display.render_dot_tree (root)

Decorators (Hats)
Decorators with very specific functionality:
* py_trees.decorators.Condition ()
* py_trees.decorators.Inverter ()
* py_trees.decorators.OneShot ()
* py_trees.decorators.TimeOut ()
And the X is Y family:
* py_trees.decorators.FailurelIsRunning()

* py_trees.decorators.FailureIsSuccess ()

16

Chapter 4. Decorators

py_trees Documentation, Release 0.7.6

py_trees.decorators.RunningIsFailure ()
py_trees.decorators.RunningIsSuccess ()
py_trees.decorators.SuccessIsFailure ()

py_trees.decorators.SuccessIsRunning()

17

py_trees Documentation, Release 0.7.6

18 Chapter 4. Decorators

CHAPTER B

Blackboards

Blackboards are not a necessary component, but are a fairly standard feature in most behaviour tree implementations.
See, for example, the design notes for blackboards in Unreal Engine.

Implementations however, tend to vary quite a bit depending on the needs of the framework using them. Some of the
usual considerations include scope and sharing of blackboards across multiple tree instances.

For this package, we’ve decided to keep blackboards extremely simple to fit with the same ‘rapid development for
small scale systems’ principles that this library is designed for.

* No sharing between tree instances

* No locking for reading/writing

* Global scope, i.e. any behaviour can access any variable
* No external communications (e.g. to a database)

class py_trees.blackboard.Blackboard
Borg style key-value store for sharing amongst behaviours.

19

https://forums.unrealengine.com/showthread.php?2004-Blackboard-Documentation
http://code.activestate.com/recipes/66531-singleton-we-dont-need-no-stinkin-singleton-the-bo/

py_trees Documentation, Release 0.7.6

Examples

You can instantiate the blackboard from anywhere in your program. Even disconnected calls will get access to
the same data store. For example:

def check_foo():
blackboard = Blackboard()
assert (blackboard.foo, "bar")
if name_ == '_ _main__ ':
blackboard = Blackboard()
blackboard.foo = "bar"
check_foo ()

If the key value you are interested in is only known at runtime, then you can set/get from the blackboard without
the convenient variable style access:

blackboard = Blackboard()
result = blackboard.set ("foo", "bar")
foo = blackboard.get ("foo")

The blackboard can also be converted and printed (with highlighting) as a string. This is useful for logging and
debugging.

print (Blackboard())

Warning: Be careful of key collisions. This implementation leaves this management up to the user.

See also:

The py-trees-demo-blackboard program demos use of the blackboard along with a couple of the blackboard
behaviours.

Chapter 5. Blackboards

CHAPTER O

Trees

While a graph of connected behaviours and composites form a tree in their own right (i.e. it can be initialised and
ticked), it is usually convenient to wrap your tree in another class to take care of alot of the housework and provide
some extra bells and whistles that make your tree flourish.

This package provides a default reference implementation that is directly usable, but can also be easily used as inspi-
ration for your own tree custodians.

6.1 The Behaviour Tree

class py_trees.trees.BehaviourTree (r00t)
Grow, water, prune your behaviour tree with this, the default reference implementation. It features a few en-
hancements to provide richer logging, introspection and dynamic management of the tree itself:

» Pre and post tick handlers to execute code automatically before and after a tick

21

py_trees Documentation, Release 0.7.6

* Visitor access to the parts of the tree that were traversed in a tick
* Subtree pruning and insertion operations
» Continuous tick-tock support

See also:

The py-trees-demo-tree-stewardship program demonstrates the above features.

Parameters root (Behaviour) —root node of the tree
Variables
¢ count (int)— number of times the tree has been ticked.

* root (Behaviour) —root node of the tree

* visitors ([visitors])— entities that visit traversed parts of the tree when it ticks

* pre_tick_handlers ([func]) — functions that run before the entire tree is ticked

* post_tick_handlers ([func]) — functions that run after the entire tree is ticked

Raises AssertionError —if incoming root variable is not the correct type

6.2 Skeleton

The most basic feature of the behaviour tree is it’s automatic tick-tock. You can t ick_tock () for a specific number
of iterations, or indefinitely and use the interrupt () method to stop it.

#!/usr/bin/env python

import py_ trees

if

name_ == '_ _main__ ':

root = py_trees.composites.Selector ("Selector™)

high = py_trees.behaviours.Success (name="High Priority")
med = py_trees.behaviours.Success (name="Med Priority")
low = py_trees.behaviours.Success (name="Low Priority")

root.add_children([high, med, low])

behaviour_tree = py_trees.trees.BehaviourTree (root)
behaviour_tree.setup(1l5)
try:
behaviour_tree.tick_tock(
sleep_ms=500,
number_of_iterations=py_trees.trees.CONTINUOUS_TICK_TOCK,
pre_tick_handler=None,
post_tick_handler=None
)
except KeyboardInterrupt:
behaviour_tree.interrupt ()

or create your own loop and tick at your own leisure with the t i ck () method.

22

Chapter 6. Trees

)

py_trees Documentation, Release 0.7.6

6.3 Pre/Post Tick Handlers

Pre and post tick handlers can be used to perform some activity on or with the tree immediately before and after
ticking. This is mostly useful with the continuous ¢t i ck_tock () mechanism.

This is useful for a variety of purposes:
* logging
* doing introspection on the tree to make reports
e extracting data from the blackboard
* triggering on external conditions to modify the tree (e.g. new plan arrived)

This can be done of course, without locking since the tree won’t be ticking while these handlers run. This does
however, mean that your handlers should be light. They will be consuming time outside the regular tick period.

The py-trees-demo-tree-stewardship program demonstrates a very simple pre-tick handler that just prints a line to
stdout notifying the user of the current run. The relevant code:

Listing 1: pre-tick-handler-function

def pre_tick_handler (behaviour_tree) :
mmwn

This prints a banner and will run immediately before every tick of the tree.

Args:
behaviour_tree (:class: ~py_trees.trees.BehaviourTree'): the tree custodian

mon

print ("\n-————————- Run %s ————————- \n" % behaviour_tree.count)

Listing 2: pre-tick-handler-adding

Rendering
liddagdadadaadadaddi

6.4 Visitors

Visitors are entities that can be passed to a tree implementation (e.g. BehaviourTree) and used to either visit each
and every behaviour in the tree, or visit behaviours as the tree is traversed in an executing tick. At each behaviour, the
visitor runs its own method on the behaviour to do as it wishes - logging, introspecting, etc.

Warning: Visitors should not modify the behaviours they visit.

The py-trees-demo-tree-stewardship program demonstrates the two reference visitor implementations:
* DebugVisitor prints debug logging messages to stdout and
* SnapshotVisitor collects runtime data to be used by visualisations

Adding visitors to a tree:

6.3. Pre/Post Tick Handlers 23

py_trees Documentation, Release 0.7.6

behaviour_tree = py_trees.trees.BehaviourTree (root)
behaviour_tree.visitors.append(py_trees.visitors.DebugVisitor())
snapshot_visitor = py_trees.visitors.SnapshotVisitor ()
behaviour_tree.visitors.append (snapshot_visitor)

These visitors are automatically run inside the tree’s t i ck method. The former immediately logs to screen, the latter
collects information which is then used to display an ascii tree:

behaviour_tree.tick ()

ascii_tree = py_trees.display.ascii_tree(
behaviour_tree.root,
snapshot_information=snapshot_visitor)

)

print (ascii_tree)

24 Chapter 6. Trees

CHAPTER /

Visualisation

Behaviour trees are significantly easier to design, monitor and debug with visualisations. Py Trees does provide
minimal assistance to render trees to various simple output formats. Currently this includes dot graphs, strings or
stdout.

7.1 Ascii Trees

You can get a very simple ascii representation of the tree on stdout with print_ascii_tree():

py_trees.display.print_ascii_tree (root, indent=0, show_status=False)
Print the ASCII representation of an entire behaviour tree.

Parameters
* root (Behaviour) — the root of the tree, or subtree you want to show
* indent (int) — the number of characters to indent the tree

* show_status (bool) — additionally show feedback message and status of every element

Examples

Render a simple tree in ascii format to stdout.

root = py_trees.composites.Sequence ("Sequence")
for action in ["Action 1", "Action 2", "Action 3"]:
b = py_trees.behaviours.Count (
name=action,

(continues on next page)

25

py_trees Documentation, Release 0.7.6

(continued from previous page)

fail_until=o0,
running_until=1,
success_until=10)
root.add_child (b)
py_trees.display.print_ascii_tree(root)

Tip: To additionally display status and feedbback message from every behaviour in the tree, simply set the
show_status flag to True.

7.2 Ascii Trees (Runtime)

When a tree is ticking, it is important to be able to catch the status and feedback message from each behaviour that
has been traversed. You can do this by using the SnapshotVisitor in conjunction with the ascii_tree ()
function:

py_trees.display.ascii_tree (tree, indent=0, snapshot_information=None)
Build an ascii tree representation as a string for redirecting to elsewhere other than stdout. This can be the entire
tree, or a recorded snapshot of the tree (i.e. just the part that was traversed).

Parameters
* tree (Behaviour) — the root of the tree, or subtree you want to show
e indent (int) — the number of characters to indent the tree

* snapshot_information (visitors) — a visitor that recorded information about a
traversed tree (e.g. SnapshotVisitor)

* snapshot_information — a visitor that recorded information about a traversed tree
(e.g. SnapshotVisitor)

Returns an ascii tree (i.e. in string form)

Return type str

Examples

Use the SnapshotVisitor and BehaviourTree to generate snapshot information at each tick and feed
that to a post tick handler that will print the traversed ascii tree complete with status and feedback messages.

-- running

def post_tick_handler (snapshot_visitor, behaviour_tree):
print (py_trees.display.ascii_tree (behaviour_tree.root,
snapshot_information=snapshot_visitor))

root = py_trees.composites.Sequence ("Sequence")
for action in ["Action 1", "Action 2", "Action 3"]:
b = py_trees.behaviours.Count (
name=action,

(continues on next page)

26 Chapter 7. Visualisation

py_trees Documentation, Release 0.7.6

(continued from previous page)

fail_until=o0,
running_until=1,
success_until=10)
root.add_child (b)
behaviour_tree = py_trees.trees.BehaviourTree (root)
snapshot_visitor = py_trees.visitors.SnapshotVisitor ()
behaviour_tree.add_post_tick_handler (
functools.partial (post_tick_handler,
snapshot_visitor))
behaviour_tree.visitors.append (snapshot_visitor)

7.3 Render to File (Dot/'SVG/PNG)

API
You can render trees into dot/png/svg files simply by calling the render._dot_tree () function.

Should you wish to capture the dot graph result directly (as a dot graph object), use the
generate_pydot_graph () method.

Command Line Utility

You can also render any exposed method in your python packages that creates a tree and returns the root of the tree
from the command line using the py-trees-render program.

Blackboxes and Visibility Levels

There is also an experimental feature that allows you to flag behaviours as blackboxes with multiple levels of granu-
larity. This is purely for the purposes of showing different levels of detail in rendered dot graphs. A fullly rendered
dot graph with hundreds of behaviours is not of much use when wanting to visualise the big picture.

The py-trees-demo-dot-graphs program serves as a self-contained example of this feature.

7.3. Render to File (Dot/SVG/PNG) 27

py_trees Documentation, Release 0.7.6

28 Chapter 7. Visualisation

CHAPTER 8

Surviving the Crazy Hospital

Your behaviour trees are misbehaving or your subtree designs seem overly obtuse? This page can help you stay focused
on what is important. .. staying out of the padded room.

Note: Many of these guidelines we’ve evolved from trial and error and are almost entirely driven by a need to avoid a
burgeoning complexity (aka flying spaghetti monster). Feel free to experiment and provide us with your insights here
as well!

8.1 Behaviours

» Keep the constructor minimal so you can instantiate the behaviour for offline rendering
* Put hardware or other runtime specific initialisation in setup ()
* Update feedback_message for significant events only so you don’t end up with too much noise

* The update () method must be light and non-blocking so a tree can keep ticking over

29

py_trees Documentation, Release 0.7.6

» Keep the scope of a single behaviour tight and focused, deploy larger concepts as subtrees

8.2 Composites

* Avoid creating new composites, this increases the decision complexity by an order of magnitude

* Don’t subclass merely to auto-populate it, build a create_<xyz>_subtree () library instead

8.3 Trees

* Make sure your pre/post tick handlers and visitors are all very light.

* A good tick-tock rate for higher level decision making is around 500ms.

30 Chapter 8. Surviving the Crazy Hospital

CHAPTER 9

Terminology

blocking A behaviour is sometimes referred to as a ‘blocking’ behaviour. Technically, the execution of a be-
haviour should be non-blocking (i.e. the tick part), however when it’s progress from ‘RUNNING’ to ‘FAIL-
URE/SUCCESS’ takes more than one tick, we say that the behaviour itself is blocking. In short, blocking ==
RUNNING.

fsm

flying spaghetti monster Whilst a serious religous entity in his own right (see pastafarianism), it’s also very easy to
imagine your code become a spiritual flying spaghetti monster if left unchecked:

tick
ticks

ticking A key feature of behaviours and their trees is in the way they tick. A tick is merely an execution slice, similar
to calling a function once, or executing a loop in a control program once.

When a behaviour ticks, it is executing a small, non-blocking chunk of code that checks a variable or trig-
gers/monitors/returns the result of an external action.

When a behaviour tree ticks, it traverses the behaviours (starting at the root of the tree), ticking each behaviour,
catching its result and then using that result to make decisions on the direction the tree traversal will take. This
is the decision part of the tree. Once the traversal ends back at the root, the tick is over.

Once a tick is done..you can stop for breath! In this space you can pause to avoid eating the cpu, send some
statistics out to a monitoring program, manipulate the underlying blackboard (data), ... At no point does the
traversal of the tree get mired in execution - it’s just in and out and then stop for a coffee. This is absolutely
awesome - without this it would be a concurrent mess of locks and threads.

Always keep in mind that your behaviours’ executions must be light. There is no parallelising here and your
tick time needs to remain small. The tree should be solely about decision making, not doing any actual blocking

31

http://www.venganza.org/

py_trees Documentation, Release 0.7.6

work. Any blocking work should be happening somewhere else with a behaviour simply in charge of start-
ing/monitoring and catching the result of that work.

Add an image of a ticking tree here.

32 Chapter 9. Terminology

cHAaPTER 10

FAQ

Tip: For hints and guidelines, you might also like to browse Surviving the Crazy Hospital.

Will there be a c++ implementation?

Certainly feasible and if there’s a need. If such a things should come to pass though, the c++ implementation should
compliment this one. That is, it should focus on decision making for systems with low latency and reactive require-
ments. It would use triggers to tick the tree instead of tick-tock and a few other tricks that have evolved in the gaming
industry over the last few years. Having a c++ implementation for use in the control layer of a robotics system would
be a driving use case.

33

py_trees Documentation, Release 0.7.6

34 Chapter 10. FAQ

cHAPTER 11

Demos

11.1 py-trees-demo-action-behaviour

Demonstrates the characteristics of a typical ‘action” behaviour.
* Mocks an external process and connects to it in the setup() method
* Kickstarts new goals with the external process in the initialise() method
* Monitors the ongoing goal status in the update() method

¢ Determines RUNNING/SUCCESS pending feedback from the external process

usage: py-trees-demo-action-behaviour [-h]

class py_trees.demos.action.Action (name="Action’)
Bases: py_trees.behaviour.Behaviour

Connects to a subprocess to initiate a goal, and monitors the progress of that goal at each tick until the goal is
completed, at which time the behaviour itself returns with success or failure (depending on success or failure of
the goal itself).

This is typical of a behaviour that is connected to an external process responsible for driving hardware, conduct-
ing a plan, or a long running processing pipeline (e.g. planning/vision).

Key point - this behaviour itself should not be doing any work!

__init__ (name=’Action’)
Default construction.
initialise()
Reset a counter variable.

setup (unused_timeout=15)
No delayed initialisation required for this example.

35

40

41

2

py_trees Documentation, Release 0.7.6

terminate (new_status)
Nothing to clean up in this example.

update ()
Increment the counter and decide upon a new status result for the behaviour.

py_trees.demos.action.main ()
Entry point for the demo script.

py_trees.demos.action.planning (pipe_connection)
Emulates an external process which might accept long running planning jobs.

Listing 1: py_trees/demos/action.py

#!/usr/bin/env python

#

License: BSD

https://raw.githubusercontent.com/stonier/py_trees/devel/LICENSE

#
(Zidazazazsaaasisasasasaatasdatasdatasdasssaatatsadadsadadaddadadaasaddadadis
Documentation

#EFAF AR AAAAAFAAARARFARARARAAFAEARAAARHA A A AFA R A AR AR HA A EA AR EA A

mwn

argparse::
:module: py_trees.demos.action

:func: command_line_argument_parser
:prog: py-trees—-demo—action—-behaviour

image:: images/action.gif
mmn

FHAHAFHAHAFHAHAF A HAF A RS RAF A HEAF AR F A H A F A H A H A H A H A AR H AR H AR A 44
Imports
#HAE#AF A FAA AR A AR A AARAF A RAF AR AR A A FRA A SR A AR A AR F AR A AR A AR A SRS

import argparse

import atexit

import multiprocessing
import py_ trees

import time

import py_ trees.console as console
lZddazdsdadssdadssdadasdadatdadatdadatdsdatasdadasdadaddadadddaddidadsidsdsiidi

Classes

#HFFHRAARAAFFFRAAAAAFFREAAAAFFHRAARAAFFFEAAAAFFHRRAAAAFFFAAAAAAFFREAAA SRR AA

def description():

content = "Demonstrates the characteristics of a typical 'action' behaviour.\n"

content += "\n"

content += "x Mocks an external process and connects to it in the setup() method\n
o

content += "x Kickstarts new goals with the external process in the initialise ()
—method\n"

content += "x Monitors the ongoing goal status in the update () method\n"

content += "x Determines RUNNING/SUCCESS pending feedback from the external
—process\n"

(continues on next page)

36 Chapter 11. Demos

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

3

74

75

76

77

78

79

90

91

92

93

94

95

96

97

py_trees Documentation, Release 0.7.6

(continued from previous page)

if py_trees.console.has_colours:

banner_line = console.green + "x" x 79 + "\n" + console.reset
s = "\n"
s += banner_line
s += console.bold_white + "Action Behaviour".center(79) + "\n" + console.reset
s += banner_line
s += n\nn
s += content
s 4= n\n"
s += banner_line

else:
s = content

return s

def epilog():

if py_trees.console.has_colours:
return console.cyan + "And his noodly appendage reached forth to tickle the
—blessed...\n" + console.reset
else:
return None

def command_line_argument_parser () :
return argparse.ArgumentParser (description=description(),
epilog=epilog(),
formatter_class=argparse.
—RawDescriptionHelpFormatter,

def planning(pipe_connection) :

mmon

Emulates an external process which might accept long running planning jobs.
mmwn
idle = True
percentage_complete = 0
try:
while (True) :
if pipe_connection.poll():
pipe_connection.recv ()
percentage_complete = 0
idle = False
if not idle:
percentage_complete += 10
pipe_connection.send([percentage_complete])
if percentage_complete == 100:
idle = True
time.sleep(0.5)
except KeyboardInterrupt:
pass

class Action(py_trees.behaviour.Behaviour) :

mmn

Connects to a subprocess to initiate a goal, and monitors the progress

(continues on next page)

11.1. py-trees-demo-action-behaviour 37

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

py_trees Documentation, Release 0.7.6

(continued from previous page)

of that goal at each tick until the goal is completed, at which time
the behaviour itself returns with success or failure (depending on
success or failure of the goal itself).

This is typical of a behaviour that 1is connected to an external process
responsible for driving hardware, conducting a plan, or a long running
processing pipeline (e.g. planning/vision).

Key point - this behaviour itself should not be doing any work!

mmn

def _ init_ (self, name="Action"):
mmn

Default construction.

moon

super (Action, self).__init__ (name)

o)

self.logger.debug("%s.__init_ ()" % (self. class__ . name_))

def setup(self, unused_timeout=15):

mmon

No delayed initialisation required for this example.
mimn

self.logger.debug (" $s.setup () ->connections to an external process" % (self._
—class___._ _name_))
self.parent_connection, self.child connection = multiprocessing.Pipe ()

self.planning = multiprocessing.Process (target=planning, args=(self.child_
—»connection,))

atexit.register(self.planning.terminate)

self.planning.start ()

return True

def initialise(self):

mmn
Reset a counter variable.
mmwmn

)

self.logger.debug("%s.initialise () —>sending new goal" % (self._ class__ .
—name__))

self.parent_connection.send(['new goal'])

self.percentage_completion = 0

def update (self):

mon

Increment the counter and decide upon a new status result for the behaviour.

mon

new_status = py_trees.Status.RUNNING
if self.parent_connection.poll():

self.percentage_completion = self.parent_connection.recv () .pop ()
if self.percentage_completion == 100:
new_status = py_trees.Status.SUCCESS
if new_status == py_trees.Status.SUCCESS:
self.feedback_message = "Processing finished"
self.logger.debug (" $s.update() [¢s—>¢s] [es]" % (self._ class__ . name_ ,
—self.status, new_status, self.feedback_message))
else:
self.feedback_message = "[0/%".format (self.percentage_completion)
self.logger.debug (" $s.update () [¢s] [%s]" % (self.__class__._ _name__, self.

—status, self.feedback_message))
return new_status

(continues on next page)

38 Chapter 11. Demos

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

py_trees Documentation, Release 0.7.6

(continued from previous page)

def terminate(self, new_status):
mmn

Nothing to clean up in this example.

mnn

self.logger.debug (" .terminate () [$s—->%s]" % (self._class_ ._ _name_ , self.

—status, new_status))

w

FHARFRAAFHFAFAFAAFFFRFAAAFFRFAFAHFAFRFAFAFAFFFRFAFAAFFARFAHAFFRFAFA A A RFA A A
Main
HERHFAARFAAAAAAFARARAAFAFAFAAFAFAFAAAAAAFAAAAAAFRRAA AR A A AR A AR AAHAAA

def main() :

mmn

Entry point for the demo script.

mmwn
command_line_argument_parser () .parse_args ()

print (description())

py_trees.logging.level = py_trees.logging.Level.DEBUG

action = Action ()
action.setup ()
try:

for unused_i in range (0, 12):
action.tick_once ()
time.sleep(0.5)

print ("\n")

except KeyboardInterrupt:
pass

11.2 py-trees-demo-behaviour-lifecycle

Demonstrates a typical day in the life of a behaviour.

This behaviour will count from 1 to 3 and then reset and repeat. As it does so, it logs and displays the methods as they
are called - construction, setup, initialisation, ticking and termination.

usage: py-trees-demo-behaviour-lifecycle [-h]

class py_trees.demos.lifecycle.Counter (name=’Counter’)
Bases: py_trees.behaviour.Behaviour

Simple counting behaviour that facilitates the demonstration of a behaviour in the demo behaviours lifecycle
program.

¢ Increments a counter from zero at each tick
¢ Finishes with success if the counter reaches three

¢ Resets the counter in the initialise() method.

11.2. py-trees-demo-behaviour-lifecycle 39

37

py_trees Documentation, Release 0.7.6

__init__ (name=’Counter’)
Default construction.

initialise()
Reset a counter variable.

setup (unused_timeout=15)
No delayed initialisation required for this example.

terminate (new_status)
Nothing to clean up in this example.

update ()
Increment the counter and decide upon a new status result for the behaviour.

py_trees.demos.lifecycle.main ()
Entry point for the demo script.

Listing 2: py_trees/demos/lifecycle.py

#!/usr/bin/env python

#

License: BSD

https://raw.githubusercontent.com/stonier/py_trees/devel/LICENSE

#
FHAFRFRAAAFAHAFAAARAAHAAARARFARAHA A AF A A A AHAHA A AFAHA R A AR R A AH A A A
Documentation
FHAARFAAAAFAAARARARAAHARARA AR AR A AFAAA A A RAA R AFAHA AR A RA AR AR A AR RS

mmwn

argparse::
:module: py_trees.demos.lifecycle

:func: command_line_argument_parser
:prog: py-trees—-demo-behaviour—-1lifecycle

image:: images/lifecycle.gif
mmn

#HRAAFRAAFRAFFRAAFRAFRAAFFAAFRAA AR ARAAFRAAFRAAFRAAF A A FRAA R AR AR AR AEA
Imports
ddddadzdazadaddsasdsatdsasdsastdsatdsdsdsaddsaddadsdasdsatdaatisaddaasdaaddsid

import argparse
import py_ trees
import time

import py trees.console as console

FHAFFAFFFFAFFFFAFFFAAFAFFAFAFAAFAAFAAFAFAAFAFAAFAFAAFAFAAFAFAAFFAFAAFFAFAFFAFAFFS
Classes
FHAFRFRAFRFRFFAFRFFAFRFFAFRFFAFRFRAFRFHAFR AR FR AR FA AR FA AR R F AR F R R FAARAH

def description():

content = "Demonstrates a typical day in the life of a behaviour.\n\n"

content += "This behaviour will count from 1 to 3 and then reset and repeat. As_
—~it does\n"

content += "so, it logs and displays the methods as they are called —
—construction, setup,\n"

(continues on next page)

40 Chapter 11. Demos

38

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

3

74

75

76

7

78

79

81

82

84

85

87

88

90

91

py_trees Documentation, Release 0.7.6

(continued from previous page)

content += "initialisation, ticking and termination.\n"

if py_trees.console.has_colours:
banner_line = console.green + "x" x 79 + "\n" + console.reset
s = "\1’1"

s += banner_line

s += console.bold_white + "Behaviour Lifecycle".center(79) + "\n" + console.
—reset
= banner_line

s +

s += ll\nll

s += content

s += n\nn

s += banner_line
else:

s = content
return s

def epilog():

if py_trees.console.has_colours:
return console.cyan + "And his noodly appendage reached forth to tickle the_
—blessed...\n" + console.reset
else:
return None

def command_line_argument_parser () :
return argparse.ArgumentParser (description=description{(),
epilog=epilog(),
formatter_class=argparse.
—~RawDescriptionHelpFormatter,

class Counter (py_trees.behaviour.Behaviour) :
mmwn
Simple counting behaviour that facilitates the demonstration of a behaviour in
the demo behaviours lifecycle program.

* Increments a counter from zero at each tick
* Finishes with success if the counter reaches three
* Resets the counter in the initialise() method.

mmn

def _ init_ (self, name="Counter"):

mn

Default construction.
super (Counter, self).__init__ (name)
self.logger.debug("$s.__init__ ()" % (self. class__ . name_))

def setup(self, unused_timeout=15):

mimnm
No delayed initialisation required for this example.
mmn

<)

self.logger.debug("¢s.setup ()" % (self. class_ . name_))
return True

def initialise(self):

(continues on next page)

11.2. py-trees-demo-behaviour-lifecycle 41

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106
107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

py_trees Documentation, Release 0.7.6

(continued from previous page)

mmn
Reset a counter variable.
mmmn

o)

self.logger.debug("$s.initialise ()" % (self. class__ . name_))
self.counter = 0

def update (self):

mn

Increment the counter and decide upon a new status result for the behaviour.
mirnm

self.counter += 1

new_status = py_trees.Status.SUCCESS if self.counter == 3 else py_trees.
—Status.RUNNING
if new_status == py_trees.Status.SUCCESS:
self.feedback_message = "counting...{0} - phew, thats enough for today".
—format (self.counter)
else:
self.feedback_message = "still counting"
self.logger.debug("¢s.update() [es—>%s] [ss]" % (self._ class_ . name__, self.

—status, new_status, self.feedback_message))
return new_status

def terminate(self, new_status):
mmn

Nothing to clean up in this example.

mnn

)

self.logger.debug (" $s.terminate () [¢s->%s]" & (self._ class__ . name__, self.
—status, new_status))

FHAFFAAHAAAAFAAHAAFFARHFAFFFAAFAAFFAAFAAAAFAAHAAAF AR A HFAFH AR HAFA AR A A HAAAHA
Main
HERHHAAAFAAAAAAFARAAAAFAAAFAAAAFAFARAAAAFAAAAAARRAA A RFAAAAA AR AR HAAA

def main () :

mmn

Entry point for the demo script.

mmwn
command_line_argument_parser () .parse_args ()

print (description())

py_trees.logging.level = py_trees.logging.Level.DEBUG

counter = Counter ()
counter.setup ()
try:

for unused_i in range (0, 7):
counter.tick_once ()
time.sleep(0.5)

print ("\n")

except KeyboardInterrupt:

print ("")
pass

42 Chapter 11. Demos

[S S T

py_trees Documentation, Release 0.7.6

11.3 py-trees-demo-blackboard

Demonstrates usage of the blackboard and related behaviours.

A sequence is populated with a default set blackboard variable behaviour, a custom write to blackboard behaviour that
writes a more complicated structure, and finally a default check blackboard variable beheaviour that looks for the first
variable.

usage: py-trees—-demo-blackboard [-h] [-r]

11.3.1 Named Arguments

-1, --render render dot tree to file

Default: False

Sequence

class py_trees.demos.blackboard.BlackboardWriter (name="Writer’)
Bases: py_trees.behaviour.Behaviour

Custom writer that submits a more complicated variable to the blackboard.

__init_ (name=’Writer’)
Initialize self. See help(type(self)) for accurate signature.

update ()
Write a dictionary to the blackboard and return SUCCESS.

py_trees.demos.blackboard.main ()
Entry point for the demo script.

Listing 3: py_trees/demos/blackboard.py

#!/usr/bin/env python

#

License: BSD

https://raw.githubusercontent.com/stonier/py_trees/devel /LICENSE

#
#A#AFAAARARARARFARAAARFARAEARAAAARA A AAAHA A A AHARAAA AR EA AR A AA AR RS

(continues on next page)

11.3. py-trees-demo-blackboard 43

62

py_trees Documentation, Release 0.7.6

(continued from previous page)

Documentation

(ddsaddadasadssddasddatddasddasdsasdsaddsatdaddsdadasddadddaddddddddddddddii

mwn

argparse::
:module: py_trees.demos.blackboard
:func: command_line_argument_parser
:prog: py-trees—-demo-blackboard

graphviz:: dot/demo-blackboard.dot

image:: images/blackboard.gif

mmn

FHAFRFRAAAAAHARARARAAFARARA AR AR A AFAAA A A AAA R A A AHARARA AR R RAAH AR RS
Imports
#HARHARAAAAHARARAAAAFARAAEA AR AR A AAAAA A A AAA R A A AHA A A AA AR A AR

import argparse
import py_trees
import sys

import py_trees.console as console

HAHAHAAAAFAHARA A AFAAARA AR R AR HARARA A AR A AHA A AA AR A A A RS
Classes
HEAHHAFAFAAAAAAFARAAAAFAFAFAAAAFAFAAAAFAFAAAAAAA AR A RFARAAAAFA AR AR A

def description():
content = "Demonstrates usage of the blackboard and related behaviours.\n"
content += "\n"
content += "A sequence is populated with a default set blackboard variable\n"
content += "behaviour, a custom write to blackboard behaviour that writes\n"
content += "a more complicated structure, and finally a default check\n"
content += "blackboard variable beheaviour that looks for the first variable.\n"

if py_trees.console.has_colours:

banner_line = console.green + "+" % 79 + "\n" + console.reset
s = "\nll
s += banner_line
s += console.bold_white + "Blackboard".center(79) + "\n" + console.reset
s += banner_line
s += ll\nll
s += content
s += vl\nlv
s += banner_line

else:
s = content

return s

def epilog():

if py_trees.console.has_colours:
return console.cyan + "And his noodly appendage reached forth to tickle the_,
—blessed...\n" + console.reset
else:

(continues on next page)

44 Chapter 11. Demos

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

py_trees Documentation, Release 0.7.6

(continued from previous page)

return None

def command_line_argument_parser () :
parser = argparse.ArgumentParser (description=description(),
epilog=epilog(),
formatter_class=argparse.
—RawDescriptionHelpFormatter,
)
parser.add_argument ('-r', '—--render', action='store_true', help='render dot tree
—to file')
return parser

class BlackboardWriter (py_trees.behaviour.Behaviour) :

mon

Custom writer that submits a more complicated variable to the blackboard.
mmn

def _ init_ (self, name="Writer"):
super (BlackboardWriter, self).__init__ (name)
self.logger.debug("?¢s.__init__ ()" % (self. class_ . name__))

self.blackboard = py_trees.blackboard.Blackboard()

def update (self):
mmwmn
Write a dictionary to the blackboard and return :data: ~py_trees.Status.
—SUCCESS " .

mn

)

self.logger.debug("?s.update ()" % (self. class__ . name__))
self.blackboard.spaghetti = {"type": "Gnocchi", "quantity": 2}
return py_trees.Status.SUCCESS

def create_tree():

root = py_trees.composites.Sequence ("Sequence™)

set_blackboard_variable = py_trees.blackboard.SetBlackboardvVariable (name="Set Foo
", variable_name="foo", variable_value="bar")

write_blackboard_variable = BlackboardWriter (name="Writer")

check_blackboard_variable = py_trees.blackboard.CheckBlackboardvariable (name=
—"Check Foo", variable_name="foo", expected_value="bar")

root.add_children ([set_blackboard_variable, write_blackboard_variable, check_
—blackboard_variable])

return root

FHHRFRAAAFAFAFAAFAARFAAAAFRFAFAAAFAFAFAAAAAAFAAAFAAAAFRFAAAAFRFAFA A A RFAAAAAAA
Main
HEAHHAAAAFAAAAAAFAAARAAFAFAFAAAAFAFAAAAAAFAAAAAAA AR AR R AFA A A HA A

def main() :

mon

Entry point for the demo script.

mmn

args = command_line_argument_parser () .parse_args()
print (description())

py_trees.logging.level = py_trees.logging.Level.DEBUG

(continues on next page)

11.3. py-trees-demo-blackboard 45

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

py_trees Documentation, Release 0.7.6

(continued from previous page)

tree = create_tree()

EE TS E S LR LS

Rendering

#FHAHAAH AR A A HHAAHAS

if args.render:
py_trees.display.render_dot_tree (tree)

sys.exit ()
#HAA A AR A A A FAAAAAHAAA
Execute
#H#AAH A AR AR HAAHAAA
tree.setup (timeout=15)
print ("\n-————————- Tick 0 ————————-— \n")
tree.tick_once ()
print ("\n")

py_trees.display.print_ascii_tree(tree, show_status=True)
print ("\n")
print (py_trees.blackboard.Blackboard())

11.4 py-trees-demo-context-switching

Demonstrates context switching with parallels and sequences.

A context switching behaviour is run in parallel with a work sequence. Switching the context occurs in the initialise()
and terminate() methods of the context switching behaviour. Note that whether the sequence results in failure or
success, the context switch behaviour will always call the terminate() method to restore the context. It will also call
terminate() to restore the context in the event of a higher priority parent cancelling this parallel subtree.

usage: py-trees-demo-context-switching [-h] [-r]

11.4.1 Named Arguments

-1, --render render dot tree to file

Default: False

46

Chapter 11. Demos

py_trees Documentation, Release 0.7.6

Parallel

Sequence

class py_trees.demos.context_switching.ContextSwitch (name=’ContextSwitch’)
Bases: py_trees.behaviour.Behaviour

An example of a context switching class that sets (in initialise()) and restores a context (in
terminate ()). Use in parallel with a sequence/subtree that does the work while in this context.

Attention: Simply setting a pair of behaviours (set and reset context) on either end of a sequence will not
suffice for context switching. In the case that one of the work behaviours in the sequence fails, the final reset
context switch will never trigger.

__init__ (name=’ContextSwitch’)
Initialize self. See help(type(self)) for accurate signature.

initialise()
Backup and set a new context.

terminate (new_status)
Restore the context with the previously backed up context.

update ()
Just returns RUNNING while it waits for other activities to finish.

py_trees.demos.context_switching.main ()
Entry point for the demo script.

Listing 4: py_trees/demos/contex_switching.py

#!/usr/bin/env python
#
License: BSD

https://raw.githubusercontent.com/stonier/py_trees/devel /LICENSE

(continues on next page)

11.4. py-trees-demo-context-switching 47

41

42

43

44

45

46

47

48

49

50

51

52
53

54

py_trees Documentation, Release 0.7.6

(continued from previous page)

#
FHEHRFRAAAFAFAFAAFAARFAAAAFAFAFAAFAFAFAFAAAAFAAAFAAAAARFAAAAFAFRFA A A AFAAAHAAA
Documentation

HAFFHRAARAAFFFRAARAFFFREAAAFFFFRAARAAFFFRAAAAFFFRRAAAAFFFRRARAAFFREAAA A SRR AA

mmn
argparse::
:module: py_trees.demos.context_switching
:func: command_line_argument_parser
:prog: py-trees—-demo-context-switching

graphviz:: dot/demo-context_switching.dot

image:: images/context_switching.gif
mmn

#HAARFRAAFRAFFRAFFRAFRAAFFAAFRAAF AR ARAAFRAAFEAAFRAAF A AR AR A AR A RAAF RS
Imports
ddaddazzdasddasdsasdsatdsasdsasisasdsasdaaddsaddadsdasdsatdsadisaddaaddaaddsid

import argparse
import py_ trees
import sys
import time

import py_trees.console as console
HHFFHRAAAAFFFFRAAAAAFFRAAAAAFFHRAARAAFFFEAAAAFFFRRAAAAFFFRAAAAAFFREAAAAFFFHEAA

Classes
HHAHRHAAAAFAFAFARAAAAFAAARAAFAFARAAAAFAFARAAAAAREAAAAAAFARAAA AR A AR HAAA

def description():

content = "Demonstrates context switching with parallels and sequences.\n"

content += "\n"

content += "A context switching behaviour is run in parallel with a work sequence.
—~\n"

content += "Switching the context occurs in the initialise() and terminate()
—methods\n"

content += "of the context switching behaviour. Note that whether the sequence_,
—results\n"

content += "in failure or success, the context switch behaviour will always call_
—the\n"

content += "terminate () method to restore the context. It will also call,
—terminate () \n"
content += "to restore the context in the event of a higher priority parent,_
—cancelling\n"
content += "this parallel subtree.\n"
if py_trees.console.has_colours:
banner_line = console.green + "+" % 79 + "\n" + console.reset
s = "\n"
s += banner_line
s += console.bold_white + "Context Switching".center(79) + "\n" + console.
—reset
s += banner_line
s += "\n"
s += content

(continues on next page)

48 Chapter 11. Demos

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

3

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

py_trees Documentation, Release 0.7.6

(continued from previous page)

s 4= n\nn
s += banner_line
else:
s = content
return s
def epilog():

if py_trees.console.has_colours:
return console.cyan + "And his noodly appendage reached forth to tickle the
—blessed...\n" + console.reset
else:
return None

def command_line_argument_parser () :
parser = argparse.ArgumentParser (description=description(),
epilog=epilog(),
formatter_class=argparse.
—~RawDescriptionHelpFormatter,
)
parser.add_argument ('-r', '—--render', action='store_true', help='render dot tree_
—to file')
return parser

class ContextSwitch (py_trees.behaviour.Behaviour) :
mmwmn
An example of a context switching class that sets (in " ‘initialise() ")
and restores a context (in "~ “terminate()). Use in parallel with a
sequence/subtree that does the work while in this context.

attention:: Simply setting a pair of behaviours (set and reset context) on
either end of a sequence will not suffice for context switching. In the case
that one of the work behaviours in the sequence fails, the final reset context
switch will never trigger.

mmn

def _ init_ (self, name="ContextSwitch"):
super (ContextSwitch, self).__init__ (name)
self.feedback_message = "old context"

def initialise(self):

mon

Backup and set a new context.

self.logger.debug("?s.initialise () [switch context]" % (self.__class__.__name___
—))

self.feedback_message = "new context"

def update (self):

mon

Just returns RUNNING while it waits for other activities to finish.

mmn

self.logger.debug (" ¢s.update () [RUNNING] [¢s]" % (self.__class__._ _name__, self.
—feedback_message))

return py_trees.Status.RUNNING

(continues on next page)

11.4. py-trees-demo-context-switching 49

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

py_trees Documentation, Release 0.7.6

(continued from previous page)

def terminate(self, new_status):
mmmn

Restore the context with the previously backed up context.

self.logger.debug("¢s.terminate () [$s—>%s] [restore context]" % (self.__class__ .
—_ name__ , self.status, new_status))

self.feedback_message = "old context"

def create_tree():
root = py_trees.composites.Parallel (name="Parallel", policy=py_trees.common.
—ParallelPolicy.SUCCESS_ON_ONE)
context_switch = ContextSwitch (name="Context™")
sequence = py_trees.composites.Sequence (name="Sequence")
for job in ["Action 1", "Action 2"]:
success_after_two = py_trees.behaviours.Count (name=job,
fail _until=0,
running_until=2,
success_until=10)
sequence.add_child(success_after_two)
root.add_child (context_switch)
root.add_child(sequence)
return root

FAAFFAFRAFAFFFFAFFFAAFAFFAFAAFAAFAFAAFAFAAFAFAAFAFAAFAFAAFAFAAFFAFAFFAFAFFAFAFHA
Main
FHAFRFRAFRFRAFAFRFFAFFFFAFFFFAFRFHAFRFFAFRFHAFR AR FAFHFFAFHAFAFHFRAF AR FHARAH

def main() :

mmn

Entry point for the demo script.

args = command_line_argument_parser () .parse_args()
print (description())

py_trees.logging.level = py_trees.logging.Level.DEBUG

tree = create_tree()

#tHA# AR F AR HA AR A

Rendering

#tHA# A #AF AR FAF RS RS

if args.render:
py_trees.display.render_dot_tree (tree)
sys.exit ()

#tHA#AARFA A AR AFAAHAS
Execute
#FHAEHAAHF A A AR HHAHAS
tree.setup (timeout=15)
for i in range(l, 6):

try:
print ("\n-————————- Tick {0} ————————-— \n".format (1))
tree.tick_once ()
print ("\n")

py_trees.display.print_ascii_tree(tree, show_status=True)

(continues on next page)

50 Chapter 11. Demos

162

163

164

165

® 9 o u R W N =

py_trees Documentation, Release 0.7.6

(continued from previous page)

time.sleep(1.0)
except KeyboardInterrupt:
break
print ("\n")

11.5 py-trees-demo-dot-graphs

Renders a dot graph for a simple tree, with blackboxes.

usage: py-trees—-demo-dot—graphs [-h]
[-1 {all,fine_detail,detail, component,big_picture}]

11.5.1 Named Arguments

-1, --level Possible choices: all, fine_detail, detail, component, big_picture

visibility level

Default: “fine_detail”

Demo Dot Graphs fine_detail

BlackBox 1 Blackbox 2

py_trees.demos.dot_graphs.main ()
Entry point for the demo script.

Listing 5: py_trees/demos/dot_graphs.py

#!/usr/bin/env python

#

License: BSD

https://raw.githubusercontent.com/stonier/py_trees/devel /LICENSE

#
#EFAFAAAFAAAAAAFARARARFARAAARAAFARA A A AHA A AHA R A AA AR R EA AR EA AR RS
Documentation

ddagdzdadasadssddasadasddasdsasdsssdsasdsatddaddsdsdasdddddadddaddddddddddsi

(continues on next page)

11.5. py-trees-demo-dot-graphs 51

53

54

55

56

57

58

59

60

py_trees Documentation, Release 0.7.6

(continued from previous page)

mmn

argparse:

:module: py_trees.demos.dot_graphs
:func: command_line_argument_parser
:prog: py-trees—-demo-dot-graphs

graphviz:

mwn

: dot/demo-dot—-graphs.dot

AAFHAFFHAFFHAFFRAFFHAFFAAFHAAFHAAFFAAFRAAFEAAFRAAFHAFFHAFFRAFFHAAFRAFFHAFFAAAS

Imports

FHEARFRAFFRARFHAFFRAFHAAFFAAFRAAFEAAFRAAF AR FRAAFRAFF A AR F AR AR AR A

import argparse
import subprocess
import py_trees

import py_trees.console as console

#HFFHRAAAAFFFHRAAAAFFFRAAAAAFFFRAARAAFFFRAAAAFFFRRAAAAFFFEAARAAAFFREAAAAFFFHEAA

Classes

AAFHAFHHAFFHAFFRAFFHAFFAAFFAAFFAAFHAAFRAAFRARFRAAFEAFFEAFFRAFFHAFFRAFFHA A SRS

def description():
name = "py-trees—-demo-dot-graphs"

content

"Renders a dot graph for a simple tree,

if py_trees.console.has_colours:

banner_line

s =

n n n n n n nonnnnon

s +=
s +=
—level=all"

s +=

s +=

n \nll

with blackboxes.\n"

console.green + "+" x 79 + "\n" + console.reset

banner_line

—level=component" +

s +=

console.bold_white + "Dot Graphs".center(79) + "\n" + console.reset

banner_line

u\nn

content

u\nn

console.white

console.bold + " Generate Full Dot Graph" + console.reset + "\n"

u\nn

console.cyan + " [0)}".format (name) + console.reset + "\n"

n\nn

console.bold + " With Varying Visibility Levels" + console.reset + "\n

n\nn

console.cyan + " {0}".format (name) + console.yellow + " ——

+ console.reset + "\n"

console.cyan + " {0}".format (name) + console.yellow + " ——
—level=detail" + console.reset + "\n"

console.cyan + " {0}".format (name) + console.yellow + " ——

console.reset + "\n"
console.cyan + " {0}".format (name) + console.yellow + " ——

—level=big_picture"

s +=

n \nll

+ console.reset + "\n"

s += banner_line

else:

(continues on next page)

52

Chapter 11. Demos

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

py_trees Documentation, Release 0.7.6

(continued from previous page)

s = content
return s

def epilog():
if py_trees.console.has_colours:
return console.cyan + "And his noodly appendage reached forth to tickle the
—blessed...\n" + console.reset
else:
return None

def command_line_argument_parser () :
parser = argparse.ArgumentParser (description=description(),
epilog=epilog(),
formatter_class=argparse.
—~RawDescriptionHelpFormatter,

)

first_blackbox

first_blackbox.
first_blackbox.
first_blackbox.
first_blackbox
second_blackbox

second_blackbox.
second_blackbox.
second_blackbox.

second_blackbox
third_blackbox
third_blackbox.
third_blackbox.
third_blackbox.
third_blackbox.
root.add_child(
root.add_child(
first_blackbox.
return root

parser.add_argument ('-1', '—--level', action='store',
default="fine_detail',
choices=['all', 'fine_detail', 'detail', 'component',6 'big_
—picture'],
help='visibility level')
return parser
def create_tree(level):
root = py_trees.composites.Selector ("Demo Dot Graphs 2s" % level)

= py_trees.composites.Sequence ("BlackBox 1")

add_child(py_trees.behaviours.Running ("Worker™))
add_child(py_trees.behaviours.Running ("Worker"))
add_child(py_trees.behaviours.Running ("Worker"))

.blackbox_level = py_trees.common.BlackBoxLevel .BIG_PICTURE

= py_trees.composites.Sequence ("Blackbox 2")
add_child(py_trees.behaviours.Running ("Worker"))
add_child(py_trees.behaviours.Running ("Worker"))
add_child(py_trees.behaviours.Running ("Worker"))
.blackbox_level = py_trees.common.BlackBoxLevel.COMPONENT
= py_trees.composites.Sequence ("Blackbox 3")
add_child(py_trees.behaviours.Running ("Worker"))
add_child(py_trees.behaviours.Running ("Worker"))
add_child(py_trees.behaviours.Running ("Worker™))
blackbox_level = py_trees.common.BlackBoxLevel .DETAIL
first_blackbox)

second_blackbox)

add_child(third_blackbox)

HERHFAARFAAAAARFARAAAAFAFAFAAFAFAFAAAAAAFAAAAAFAFARAAFAA IR ARFAAAAA AR FAHAAA
Main
FHEHRFRAAAAAFAFAAFFARFAAAFAEFAFAFFAFAFAFAAAAFAAAFAAAAFAFA A A AT A AARFAAA A

def main() :

mmn

Entry point for the demo script.

mmn

(continues on next page)

11.5. py-trees-demo-dot-graphs 53

115

116

117

118

119

13

py_trees Documentation, Release 0.7.6

(continued from previous page)

args = command_line_argument_parser () .parse_args()
args.enum_level = py_trees.common.string to_visibility_ level
print (description())

py_trees.logging.level = py_trees.logging.Level.DEBUG

root = create_tree(args.level)
py_trees.display.render_dot_tree(root, args.enum level)

if py_trees.utilities.which ("xdot"):

try:
subprocess.call (["xdot", "demo_dot_graphs_%s.dot" %
except KeyboardInterrupt:
pass
else:
print ("")

console.logerror ("No xdot viewer found, skipping display
—install xdot]")
print (u n)

(args.level)

args.levell])

[hint: sudo apt,

11.6 py-trees-demo-selector

Higher priority switching and interruption in the children of a selector.

In this example the higher priority child is setup to fail initially, falling back to the continually running second child.

On the third tick, the first child succeeds and cancels the hitherto running child.

usage: py-trees-demo-selector [-h] [-r]

11.6.1 Named Arguments

-, --render render dot tree to file

Default: False

54

Chapter 11. Demos

39

40

41

42

43

44

45

46

47

48

49

50

py_trees Documentation, Release 0.7.6

py_trees.demos.selector.main ()
Entry point for the demo script.

Listing 6: py_trees/demos/selector.py

#!/usr/bin/env python

#

License: BSD

https://raw.githubusercontent.com/stonier/py_trees/devel/LICENSE

#

FHAFAFHAFAFHAFA AR FAF AR F A RAF AR F AR F A H A F A F A A F AR A AR A AR A A4
Documentation

(ddaadsdadasddssddssadatddasdsasdsasdsasdsatdsaddsdadasddadddadddadddddddddsii

mwn

argparse::
:module: py_trees.demos.selector
:func: command_line_argument_parser
:prog: py-trees—-demo-selector

graphviz:: dot/demo-selector.dot

image:: images/selector.gif

mmwn

#HAFRFAAAAFAAARAAAAAAHARAAA AR AR RAAFAAA A A AAA R A AA AR A RAA R RA AR A AR
Imports
#HAAHAAAAFAHARARAAA AR R A AR AR RA AR EA A AR A AHA A RAA R A AR

import argparse
import py_ trees
import sys
import time

import py_trees.console as console

FHEHAFAAAAFAFAFARFAARFAAAAAAFAFARAAFAFAFAAAAFAAAFAAFAARFAAAAAF A AFA A AHAAAAAAA
Classes

HHFFHRAAAAFFFFRAAAAFFFRAAAAAFFHRAARAAFFFRAAAAFFFREAAAAFFFRAAAAAFFREAAAAFFFHEAA

def description():

content = "Higher priority switching and interruption in the children of a_
—selector.\n"

content += "\n"

content += "In this example the higher priority child is setup to fail initially,
t—>\I'!"

content += "falling back to the continually running second child. On the third\n"

content += "tick, the first child succeeds and cancels the hitherto running child.
t—>\I')."

if py_trees.console.has_colours:

banner_line = console.green + "+" % 79 + "\n" + console.reset

s = "\nll

s += banner_line

s += console.bold_white + "Selectors".center(79) + "\n" + console.reset
s += banner_line

s += n\nn

s += content

(continues on next page)

11.6. py-trees-demo-selector 55

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

82

83

85

86

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

py_trees Documentation, Release 0.7.6

(continued from previous page)

s += "\n"
s += banner_line
else:
s = content
return s
def epilog():

if py_trees.console.has_colours:
return console.cyan + "And his noodly appendage reached forth to tickle the
—blessed...\n" + console.reset
else:
return None

def command_line_argument_parser () :
parser = argparse.ArgumentParser (description=description(),
epilog=epilog(),
formatter_class=argparse.
—~RawDescriptionHelpFormatter,
)
parser.add_argument ('-r', '—--render', action='store_true', help='render dot tree_
—~to file'")
return parser

def create_tree():

root = py_trees.composites.Selector ("Selector")

success_after_two = py_trees.behaviours.Count (name="After Two",
fail_until=2,
running_until=2,
success_until=10)

always_running = py_trees.behaviours.Running (name="Running")

root.add_children([success_after_two, always_running])

return root

FHEHAHAAAAFAFAFARFAARFARAAFAFAFARAFAAAFAFARAAFAARFAAFAARFAAAAAF A RFA A AFAAAHAAA
Main
FHARFRAAAAAFAFAAFAARFAAAFFRFAFAAFAFAFAFAAAFAAAFAAFAAAFAAAAF AR A A RFAAA A

def main() :

mmn

Entry point for the demo script.

mmwn

args = command_line_argument_parser () .parse_args()
print (description())

py_trees.logging.level = py_trees.logging.Level.DEBUG

tree = create_tree()

[ZZZZZ A EE A Z L E L S

Rendering

#H#A#AAAHARAAARAFAAAA

if args.render:
py_trees.display.render_dot_tree (tree)
sys.exit ()

(continues on next page)

56 Chapter 11. Demos

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

py_trees Documentation, Release 0.7.6

(continued from previous page)

#HAHAA A AR A A A A HAA
Execute
#HAAA AR AR A HAAAAAHAAAS
tree.setup (timeout=15)
for i in range(l, 4):
try:
print ("\n-————————- Tick {0} ————————- \n".format (i))
tree.tick_once ()
print ("\n")
py_trees.display.print_ascii_tree(tree, show_status=True)
time.sleep(1.0)
except KeyboardInterrupt:
break
print ("\n")

11.7 py-trees-demo-sequence

Demonstrates sequences in action.

A sequence is populated with 2-tick jobs that are allowed to run through to completion.

usage: py-trees-demo-sequence [-h] [-r]

11.7.1 Named Arguments

-1, --render render dot tree to file

Default: False

Sequence

py_trees.demos.sequence.main ()
Entry point for the demo script.

11.7. py-trees-demo-sequence 57

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

py_trees Documentation, Release 0.7.6

Listing 7: py_trees/demos/sequence.py

#!/usr/bin/env python

#

License: BSD

https://raw.githubusercontent.com/stonier/py_trees/devel/LICENSE

#
FHAFRHRAAAFAHARAAARFAHAAAAARFARAHARAAFRHAEAAFAHA R A A FAH AR A RAA R R A AH AR HA A
Documentation

#HAAFAAAAFAAARAAA A AFARAAARFARARA AR AA A A AAAEA A A AFARARA AR EA AR AR

mmn

argparse::
:module: py_trees.demos.sequence
:func: command_line_argument_parser
:prog: py-trees-demo-sequence

graphviz:: dot/demo-sequence.dot

image:: images/sequence.gif

mmwn

(didazdddadadaaasdsaaasaaaaaddatssdataddatssaadadsadadsadadsadadadaasaddadsdis
Imports
[dddzzddadsdsaddsdsdsdddsdaddsdatdsdadadaadaddaddaaddaddaddddddddddddddd

import argparse
import py_trees
import sys
import time

import py trees.console as console

FHAFAAFAFAFFAFAFFAFAFFFFAFFAFAFFFFAFFFFAFAFHAFAFAAFAFAAFAFAAFAFAAFAFAAAAFAAAAF
Classes
FHAFRFRAFRFRAFAFRFFAFFFFAFRFFAFRFRAFR AR FRF R FA AR FA AR FA AR R FHFRAF R R FHFRAH

def description():

content = "Demonstrates sequences in action.\n\n"

content += "A sequence is populated with 2-tick jobs that are allowed to run,
—through to\n"

content += "completion.\n"

if py_trees.console.has_colours:

banner_line = console.green + "x" x 79 + "\n" + console.reset
s = u\nu
s += banner_line
s += console.bold_white + "Sequences".center (79) + "\n" + console.reset
s += banner_line
s += H\nll
s += content
s += ll\n"
s += banner_line
else:
s = content
return s

(continues on next page)

58 Chapter 11. Demos

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

83

84

86

87

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

py_trees Documentation, Release 0.7.6

(continued from previous page)

def epilog():
if py_trees.console.has_colours:
return console.cyan + "And his noodly appendage reached forth to tickle the
—blessed...\n" + console.reset
else:
return None

def command_line_argument_parser () :
parser = argparse.ArgumentParser (description=description(),
epilog=epilog(),
formatter_class=argparse.
—RawDescriptionHelpFormatter,
)
parser.add_argument ('-r', '—--render', action='store_true', help='render dot tree_
—to file')
return parser

def create_tree():
root = py_trees.composites.Sequence ("Sequence™)
for action in ["Action 1", "Action 2", "Action 3"]:
success_after_two = py_trees.behaviours.Count (name=action,
fail_until=0,
running_until=1,
success_until=10)
root.add_child(success_after_two)
return root

HEAHFAARFAAAAAAFARAAAAFAFAFAAAAFAFARAAARFAAA AR A RFAAA A AFA A AR AAHAAA
Main
FHEHAFAAAAFAFAFARFAARFARAAAFAFAFAFFAAAFAFARAAFAARFAAAAARFAAAAF AR AA AR AAHAAA

def main() :

mmn

Entry point for the demo script.

args = command_line_argument_parser () .parse_args()
print (description())

py_trees.logging.level = py_trees.logging.Level.DEBUG

tree = create_tree()

#FHAEHAAHF AR AR HHAHAS

Rendering

#FHAFFAH AR A A HHAAHAA

if args.render:
py_trees.display.render_dot_tree (tree)
sys.exit ()

tHA## AR AR A AR FAAEAS
Execute
#HAAHAA A A A A AR HAAHAS
tree.setup (timeout=15)

(continues on next page)

11.7. py-trees-demo-sequence 59

109

110

111

112

113

114

115

116

117

118

py_trees Documentation, Release 0.7.6

(continued from previous page)

for i in range(l, 6):

try:
print ("\n-———————- Tick {0} ————————— \n".format (1))
tree.tick_once ()
print ("\n")

py_trees.display.print_ascii_tree(tree, show_status=True)
time.sleep(1.0)
except KeyboardInterrupt:
break
print ("\n")

11.8 py-trees-demo-tree-stewardship

A demonstration of tree stewardship.

A slightly less trivial tree that uses a simple stdout pre-tick handler and both the debug and snapshot visitors for logging
and displaying the state of the tree.

EVENTS
* 3 : sequence switches from running to success
e 4 : selector’s first child flicks to success once only
* 8 : the fallback idler kicks in as everything else fails

e 14 : the first child kicks in again, aborting a running sequence behind it

usage: py-trees-demo-tree-stewardship [-h] [-r | —i]

11.8.1 Named Arguments

-1, --render render dot tree to file
Default: False
-i, --interactive pause and wait for keypress at each tick

Default: False

60 Chapter 11. Demos

py_trees Documentation, Release 0.7.6

Demo Tree

Sequence

Periodic

py_trees.demos.stewardship.main ()
Entry point for the demo script.

py_trees.demos.stewardship.post_tick_handler (snapshot_visitor, behaviour_tree)
Prints an ascii tree with the current snapshot status.

py_trees.demos.stewardship.pre_tick_handler (behaviour_tree)
This prints a banner and will run immediately before every tick of the tree.

Parameters behaviour_ tree (BehaviourTree) — the tree custodian

Listing 8: py_trees/demos/stewardship.py

#!/usr/bin/env python

#

License: BSD

https://raw.githubusercontent.com/stonier/py_trees/devel /LICENSE

#
#E#AFAAAFARARARFAAAAARFAAARARAAFARARAAAAAA A A AHARAAA AR EA AR EA AR AR
Documentation

(ddaadsdadasadasddasadatdsasdsasisasisasdsatisaddsdadasdiadddadddaddaddsddsii

mrmnmn
argparse::
:module: py_trees.demos.stewardship
:func: command_line_argument_parser
:prog: py-trees-demo-tree-stewardship

graphviz:: dot/stewardship.dot

image:: images/tree_stewardship.gif

mwn

(continues on next page)

11.8. py-trees-demo-tree-stewardship 61

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

py_trees Documentation, Release 0.7.6

(continued from previous page)

(didadaddadadaaaadddadadaaaaasdatasdataddatssaadadsadsdsadadsadadadaadaddadsdis
Imports
[Zddzddsdadsdsaidsdsdsdddsdadssdatasdadadaadaddad sttt addddddddddddddddd

import argparse
import functools
import py_ trees
import sys
import time

import py_trees.console as console

HAHAHAAAAFAHARAAAAAAFARAAA AR R AR FAAA A A HARA A A AHA A AR A H AR RS
Classes
HERHFAARFARAAAAFARAAAAFAFAFAAFAFAFAAAAAAFAAAAAAFARAAA A RFARA A AFAAA AR AAHAAA

def description(root):

content = "A demonstration of tree stewardship.\n\n"

content += "A slightly less trivial tree that uses a simple stdout pre-tick,
—handler\n"

content += "and both the debug and snapshot visitors for logging and displaying\n"

content += "the state of the tree.\n"

content += "\n"

content += "EVENTS\n"

content += "\n"
content += " - 3 : sequence switches from running to success\n"
content += " - 4 : selector's first child flicks to success once only\n"
content += " - 8 : the fallback idler kicks in as everything else fails\n"
content += " - 14 : the first child kicks in again, aborting a running sequence,,
—behind it\n"
content += "\n"
if py_trees.console.has_colours:
banner_line = console.green + "x" % 79 + "\n" + console.reset
s = "\n"
s += banner_line
s += console.bold_white + "Trees".center(79) + "\n" + console.reset
s += banner_line
s += "\n"
s += content
s += "\n"
s += banner_line
else:
s = content
return s
def epilog():

if py_trees.console.has_colours:
return console.cyan + "And his noodly appendage reached forth to tickle the,
~blessed...\n" + console.reset
else:
return None

def command_line_argument_parser () :
parser = argparse.ArgumentParser (description=description(create_tree()),

(continues on next page)

62 Chapter 11. Demos

75

76

77

78

79

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

py_trees Documentation, Release 0.7.6

(continued from previous page)

epilog=epilog(),
formatter_class=argparse.
—RawDescriptionHelpFormatter,
)
group = parser.add_mutually_exclusive_group ()
group.add_argument ('-r', '—--render', action='store_true', help='render dot tree_
—to file')
group.add_argument ('-1', '—-—-interactive', action='store_true', help='pause and
—wait for keypress at each tick'")
return parser

def pre_tick_handler (behaviour_tree) :

mmn

This prints a banner and will run immediately before every tick of the tree.

Args:
behaviour_tree (:class: ~py_trees.trees.BehaviourTree'): the tree custodian

mmn

print ("\n-————————- Run %s ————————— \n" % behaviour_tree.count)

def post_tick_handler (snapshot_visitor, behaviour_tree):

mon

Prints an ascii tree with the current snapshot status.

mmwn

print ("\n" + py_trees.display.ascii_tree (behaviour_tree.root,
snapshot_information=snapshot_visitor))

def create_tree():
every_n_success = py_trees.behaviours.SuccessEveryN ("EveryN", 5)
sequence = py_trees.Sequence (name="Sequence")
guard = py_trees.behaviours.Success ("Guard")
periodic_success = py_trees.behaviours.Periodic ("Periodic", 3)
finisher = py_trees.behaviours.Success ("Finisher™)
sequence.add_child (guard)
sequence.add_child(periodic_success)
sequence.add_child(finisher)
sequence.blackbox_level = py_trees.common.BlackBoxLevel.COMPONENT
idle = py_trees.behaviours.Success ("Idle")
root = py_trees.Selector (name="Demo Tree")
root.add_child(every_n_success)
root.add_child (sequence)
root.add_child(idle)
return root

HHEHAHAAAAFAFAFARFAFRFARAAFAFAFAFAAFAFAFAAAAFAAAEA A RFAAAA A AR A A AR AAHAAA
Main
FAHRFRAAAAAFAFAAFAARFAAAFFRFAFAFFAFAFAAAAAEFAAAFA A AARFAAAAFRFAFA A AR FAAA A

def main() :

mmn

Entry point for the demo script.

mmn

(continues on next page)

11.8. py-trees-demo-tree-stewardship 63

py_trees Documentation, Release 0.7.6

(continued from previous page)

129 args = command_line_argument_parser () .parse_args()

130 py_trees.logging.level = py_trees.logging.Level.DEBUG

131 tree = create_tree()

132 print (description (tree))

133

134 #HAAEHAAA A A A AR HAAHAS

135 # Rendering

136 #FHAHAAA AR A A HHAAHAA

137 if args.render:

138 py_trees.display.render_dot_tree (tree)

139 sys.exit ()

140

141 #HAA AR AAFFAAAAAHAAA

142 # Tree Stewardship

143 #HAHAAA A A A A HHAAHAA

144 behaviour_tree = py_trees.trees.BehaviourTree (tree)

145 behaviour_tree.add_pre_tick_handler (pre_tick_handler)

146 behaviour_tree.visitors.append(py_trees.visitors.DebugVisitor())

147 snapshot_visitor = py_trees.visitors.SnapshotVisitor ()

148 behaviour_tree.add_post_tick_handler (functools.partial (post_tick_handler,
—snapshot_visitor))

149 behaviour_tree.visitors.append (snapshot_visitor)

150 behaviour_tree.setup (timeout=15)

151

152 #HAA AR AHAHAAAAAHAAAS

153 # Tick Tock

154 #HEFAAA A AR A AR HAAHAS

155 if args.interactive:

156 unused_result = py_trees.console.read_single_keypress ()

157 while True:

158 try:

159 behaviour_tree.tick ()

160 if args.interactive:

161 unused_result = py_trees.console.read_single_keypress ()

162 else:

163 time.sleep(0.5)

164 except KeyboardInterrupt:

165 break

166 print ("\n")

64 Chapter 11. Demos

cHAPTER 12

Programs
12.1 py-trees-render
Point this program at a method which creates a root to render to dot/svg/png.
Examples
$ py-trees-render py_trees.demos.stewardship.create_tree
$ py-trees-render --name=foo py_trees.demos.stewardship.create_tree
$ py-trees-render --kwargs='{"level":"all"}' py_trees.demos.dot_graphs.create_tree

usage: py-trees-render [-h]
[-1 {all,fine_detail,detail, component,big_picture}]
[-n NAME] [~k KWARGS]
method

12.1.1 Positional Arguments

method space separated list of blackboard variables to watch

12.1.2 Named Arguments

-1, --level Possible choices: all, fine_detail, detail, component, big_picture
visibility level

Default: “fine_detail”

-n, --name name to use for the created files (defaults to the root behaviour name)
-k, --kwargs dictionary of keyword arguments to the method
Default: {}

65

py_trees Documentation, Release 0.7.6

66 Chapter 12. Programs

cHAPTER 13

Module API

13.1 py_trees

This is the top-level namespace of the py_trees package.

13.2 py_trees.behaviour

The core behaviour template. All behaviours, standalone and composite, inherit from this class.

”»

class py_trees.behaviour.Behaviour (name=
Bases: object

, *args, **kwargs)

Defines the basic properties and methods required of a node in a behaviour tree.

Uses all the whizbang tricks from coroutines and generators to do this as optimally as you may in python. When
implementing your own behaviour, subclass this class.

Parameters
* name (str) - the behaviour name
* xargs — variable length argument list.
* xxkwargs — arbitrary keyword arguments.
Variables
* name (str) - the behaviour name
e status (Status) — the behaviour status (INVALID, RUNNING, FAILURE, SUCCESS)
* parent (Behaviour)—a Composite instance if nested in a tree, otherwise None
* children ([Behaviour])—empty for regular behaviours, populated for composites

* feedback_message (str)— a simple message used to notify of significant happenings

67

py_trees Documentation, Release 0.7.6

* blackbox_level (BlackBoxLevel) — a helper variable for dot graphs and runtime
gui’s to collapse/explode entire subtrees dependent upon the blackbox level.

See also:

o Skeleton Behaviour Template

e The Lifecycle Demo

o The Action Behaviour Demo
has_parent_with_instance_type (instance_type)

Moves up through this behaviour’s parents looking for a behaviour with the same instance type as that
specified.

Parameters instance_type (str) — instance type of the parent to match
Returns whether a parent was found or not
Return type bool

has_parent_with_name (name)
Searches through this behaviour’s parents, and their parents, looking for a behaviour with the same name
as that specified.

Parameters name (str)—name of the parent to match, can be a regular expression
Returns whether a parent was found or not
Return type bool

initialise()

Note: User Customisable Callback

Subclasses may override this method to perform any necessary initialising/clearing/resetting of variables
when when preparing to enter this behaviour if it was not previously RUNNING. i.e. Expect this to trigger
more than once!

iterate (direct_descendants=Fualse)
Generator that provides iteration over this behaviour and all its children. To traverse the entire tree:

for node in my_behaviour.iterate() :
print ("Name: ".format (node.name))

Parameters direct_descendants (bool) — only yield children one step away from this
behaviour.

Yields Behaviour —one of it’s children

setup (timeout)
Subclasses may override this method to do any one-time delayed construction that is necessary for runtime.
This is best done here rather than in the constructor so that trees can be instantiated on the fly without any
severe runtime requirements (e.g. a hardware sensor) on any pc to produce visualisations such as dot
graphs.

Note: User Customisable Callback

68 Chapter 13. Module API

py_trees Documentation, Release 0.7.6

Parameters timeout (float)— time to wait (0.0 is blocking forever)
Returns whether it timed out trying to setup

Return type bool

stop (new_status=<Status.INVALID: "INVALID’>)
Parameters new_status (Status) — the behaviour is transitioning to this new status

This calls the user defined terminate () method and also resets the generator. It will finally set the new
status once the user’s terminate () function has been called.

Warning: Do not use this method, override terminate () instead.

terminate (new_status)

Note: User Customisable Callback

Subclasses may override this method to clean up. It will be triggered when a behaviour either finishes
execution (switching from RUNNING to FAILURE Il SUCCESS) or it got interrupted by a higher priority
branch (switching to TNVALID). Remember that the initialise () method will handle resetting of
variables before re-entry, so this method is about disabling resources until this behaviour’s next tick. This
could be a indeterminably long time. e.g.

* cancel an external action that got started

¢ shut down any tempoarary communication handles

Parameters new_status (Status) — the behaviour is transitioning to this new status

Warning: Do not set self.status = new_status here, that is automatically handled by the stop ()
method. Use the argument purely for introspection purposes (e.g. comparing the current state in
self.status with the state it will transition to in new_status.

tick ()
This function is a generator that can be used by an iterator on an entire behaviour tree. It handles the logic
for deciding when to call the user’s initialise () and terminate () methods as well as making the
actual call to the user’s update () method that determines the behaviour’s new status once the tick has
finished. Once done, it will then yield itself (generator mechanism) so that it can be used as part of an
iterator for the entire tree.

for node in my_behaviour.tick() :
print ("Do something")

Note: This is a generator function, you must use this with yield. If you need a direct call, prefer
tick_once () instead.

Yields Behaviour — areference to itself

13.2. py_trees.behaviour 69

py_trees Documentation, Release 0.7.6

tick_once()
A direct means of calling tick on this object without using the generator mechanism.

tip ()
Get the #ip of this behaviour’s subtree (if it has one) after it’s last tick. This corresponds to the the deepest
node that was running before the subtree traversal reversed direction and headed back to this node.

Returns child behaviour, itself or None if its status is TNVALID
Return type Behaviour or None

update ()

Note: User Customisable Callback

Returns the behaviour’s new status Status

Return type Status

Subclasses may override this method to perform any logic required to arrive at a decision on the behaviour’s
new status. It is the primary worker function called on by the ¢ i ck () mechanism.

Tip: This method should be almost instantaneous and non-blocking

visit (visitor)
This is functionality that enables external introspection into the behaviour. It gets used by the tree manager
classes to collect information as ticking traverses a tree.

Parameters visitor (object) — the visiting class, must have a run(Behaviour) method.

13.3 py_trees.behaviours

A library of fundamental behaviours for use.

class py_trees.behaviours.Count (name="Count’, fail_until=3, running_until=5, SUc-

cess_until=6, reset=True, *args, **kwargs)
Bases: py._trees.behaviour.Behaviour

A counting behaviour that updates its status at each tick depending on the value of the counter. The status will
move through the states in order - FATLURE, RUNNING, SUCCESS.

This behaviour is useful for simple testing and demo scenarios.
Parameters
* name (str) — name of the behaviour
e fail until (int) - set status to FATLURE until the counter reaches this value
* running_until (int) - set status to RUNNING until the counter reaches this value
e success_until (int) - set status to SUCCESS until the counter reaches this value

* reset (bool) — whenever invalidated (usually by a sequence reinitialising, or higher pri-
ority interrupting)

Variables count (int) — a simple counter which increments every tick

70 Chapter 13. Module API

py_trees Documentation, Release 0.7.6

terminate (new_status)

Note: User Customisable Callback

Subclasses may override this method to clean up. It will be triggered when a behaviour either finishes
execution (switching from RUNNING to FATLURE |l SUCCESS) or it got interrupted by a higher priority
branch (switching to TNVALID). Remember that the initialise () method will handle resetting of
variables before re-entry, so this method is about disabling resources until this behaviour’s next tick. This
could be a indeterminably long time. e.g.

e cancel an external action that got started

* shut down any tempoarary communication handles

Parameters new_status (Status) — the behaviour is transitioning to this new status

Warning: Do not set self.status = new_status here, that is automatically handled by the stop ()
method. Use the argument purely for introspection purposes (e.g. comparing the current state in
self.status with the state it will transition to in new_status.

update ()

Note: User Customisable Callback

Returns the behaviour’s new status Status

Return type Status

Subclasses may override this method to perform any logic required to arrive at a decision on the behaviour’s
new status. It is the primary worker function called on by the t i ck () mechanism.

Tip: This method should be almost instantaneous and non-blocking

class py_trees.behaviours.Failure (name=", *args, **kwargs)
Bases: py_trees.behaviour.Behaviour

class py_trees.behaviours.Periodic (name, n)
Bases: py_trees.behaviour.Behaviour

Simply periodically rotates it’s status over the RUNNING, SUCCESS, FAILURE states. That is, RUNNING for
N ticks, SUCCESS for N ticks, FATLURE for N ticks. ..

Parameters
* name (str) - name of the behaviour

* n (int) — period value (in ticks)

Note: It does not reset the count when initialising.

13.3. py_trees.behaviours 71

py_trees Documentation, Release 0.7.6

update ()

Note: User Customisable Callback

Returns the behaviour’s new status Status

Return type Status

Subclasses may override this method to perform any logic required to arrive at a decision on the behaviour’s
new status. It is the primary worker function called on by the ¢ i ck () mechanism.

Tip: This method should be almost instantaneous and non-blocking

class py_trees.behaviours.Running (name=", *args, **kwargs)
Bases: py._trees.behaviour.Behaviour

5

class py_trees.behaviours.Success (name=
Bases: py_trees.behaviour.Behaviour

', *args, **kwargs)

class py_trees.behaviours.SuccessEveryN (name, n)
Bases: py._trees.behaviour.Behaviour

This behaviour updates it’s status with SUCCES.S once every N ticks, FATLURE otherwise.
Parameters
* name (str) - name of the behaviour

* n (int) — trigger success on every n’th tick

Tip: Use with decorators to change the status value as desired, e.g. py_trees.meta.
failure_is_running()

update ()

Note: User Customisable Callback

Returns the behaviour’s new status Status

Return type Status

Subclasses may override this method to perform any logic required to arrive at a decision on the behaviour’s
new status. It is the primary worker function called on by the t i ck () mechanism.

Tip: This method should be almost instantaneous and non-blocking

72 Chapter 13. Module API

py_trees Documentation, Release 0.7.6

13.4 py_trees.blackboard

Blackboards are not a necessary component, but are a fairly standard feature in most behaviour tree implementations.
See, for example, the design notes for blackboards in Unreal Engine.

Implementations however, tend to vary quite a bit depending on the needs of the framework using them. Some of the
usual considerations include scope and sharing of blackboards across multiple tree instances.

For this package, we’ve decided to keep blackboards extremely simple to fit with the same ‘rapid development for
small scale systems’ principles that this library is designed for.

* No sharing between tree instances

* No locking for reading/writing

* Global scope, i.e. any behaviour can access any variable
* No external communications (e.g. to a database)

class py_trees.blackboard.Blackboard
Bases: object

Borg style key-value store for sharing amongst behaviours.
Examples

You can instantiate the blackboard from anywhere in your program. Even disconnected calls will get access to
the same data store. For example:

def check_foo():
blackboard = Blackboard()
assert (blackboard.foo, "bar")
if name == '_ _main_ ':
blackboard = Blackboard()
blackboard.foo = "bar"
check_foo ()

If the key value you are interested in is only known at runtime, then you can set/get from the blackboard without
the convenient variable style access:

13.4. py_trees.blackboard 73

https://forums.unrealengine.com/showthread.php?2004-Blackboard-Documentation
http://code.activestate.com/recipes/66531-singleton-we-dont-need-no-stinkin-singleton-the-bo/

py_trees Documentation, Release 0.7.6

blackboard = Blackboard()
result = blackboard.set ("foo", "bar")
foo = blackboard.get ("foo")

The blackboard can also be converted and printed (with highlighting) as a string. This is useful for logging and
debugging.

print (Blackboard())

Warning: Be careful of key collisions. This implementation leaves this management up to the user.

See also:

The py-trees-demo-blackboard program demos use of the blackboard along with a couple of the blackboard
behaviours.

get (name)
For when you only have strings to identify and access the blackboard variables, this provides a convenient
accessor.

Parameters name (str) — name of the variable to set

set (name, value, overwrite=True)
For when you only have strings to identify and access the blackboard variables, this provides a convenient
setter.

Parameters

¢ name (str)—name of the variable to set

* value (any) — any variable type

* overwrite (bool) — whether to abort if the value is already present
Returns always True unless overwrite was set to False and a variable already exists
Return type bool

class py_trees.blackboard.CheckBlackboardVariable (name, variable_name="dummy’,
expected_value=None,
comparison_operator=<built-

in function eq>, clear-
ing_policy=<ClearingPolicy.ON_INITIALISE:
1>, de-

bug_feedback_message=False)
Bases: py_trees.behaviour.Behaviour

Check the blackboard to see if it has a specific variable and optionally whether that variable has an expected
value. It is a binary behaviour, always updating it’s status with either SUCCESS or FAILURE at each tick.

Parameters
* name (str)—name of the behaviour
e variable_name (str) - name of the variable to set
* expected_value (any) — expected value to find (if None, check for existence only)
* comparison_operator (func) — one from the python operator module

* clearing_policy (any)— when to clear the match result, see ClearingPolicy

74 Chapter 13. Module API

https://docs.python.org/2/library/operator.html

py_trees Documentation, Release 0.7.6

Tip: If just checking for existence, use the default argument expected_value=None.

Tip: There are times when you want to get the expected match once and then save that result thereafter. For
example, to flag once a system has reached a subgoal. Use the NEVER flag to do this.

initialise()
Clears the internally stored message ready for a new run if o1d_data_is_valid wasn’t set.

terminate (new_status)
Always discard the matching result if it was invalidated by a parent or higher priority interrupt.

update ()
Check for existence, or the appropriate match on the expected value.

Returns FAILURE if not matched, SUCCESS otherwise.
Return type Status

class py_trees.blackboard.ClearBlackboardVariable (name=’"Clear Blackboard Variable’,

variable_name="dummy’)
Bases: py_trees.meta.Success

Clear the specified value from the blackboard.
Parameters
* name (str) - name of the behaviour
e variable_name (str) - name of the variable to clear
initialise()
Delete the variable from the blackboard.

class py_trees.blackboard.SetBlackboardVariable (name='Set Blackboard Variable’,
variable_name="dummy’, vari-

able_value=None)
Bases: py_trees.meta.Success

Set the specified variable on the blackboard. Usually we set variables from inside other behaviours, but can be
convenient to set them from a behaviour of their own sometimes so you don’t get blackboard logic mixed up
with more atomic behaviours.

Parameters
* name (str) - name of the behaviour
e variable_name (str) - name of the variable to set

* variable_value (any) — value of the variable to set

Todo: overwrite option, leading to possible failure/success logic.

initialise ()

Note: User Customisable Callback

13.4. py_trees.blackboard 75

py_trees Documentation, Release 0.7.6

Subclasses may override this method to perform any necessary initialising/clearing/resetting of variables
when when preparing to enter this behaviour if it was not previously RUNNING. i.e. Expect this to trigger
more than once!

class py_trees.blackboard.WaitForBlackboardVariable (name, variable_name="dummy’,

expected_value=None,
comparison_operator=<built-

in function eq>, clear-
ing_policy=<ClearingPolicy.ON_INITIALISE:
1>)

Bases: py_trees.behaviour.Behaviour

Check the blackboard to see if it has a specific variable and optionally whether that variable has a specific value.
Unlike CheckBlackboardVariable this class will be in a RUNNING state until the variable appears and
(optionally) is matched.

Parameters
* name (str) - name of the behaviour
* variable_name (str)—name of the variable to check
* expected_value (any) — expected value to find (if None, check for existence only)
* comparison_operator (func) — one from the python operator module

* clearing_policy (any)— when to clear the match result, see ClearingPolicy

Tip: There are times when you want to get the expected match once and then save that result thereafter. For
example, to flag once a system has reached a subgoal. Use the NEVER flag to do this.

See also:
CheckBlackboardVariable
initialise()
Clears the internally stored message ready for a new run if o1d_data_is_valid wasn’t set.

terminate (new_status)
Always discard the matching result if it was invalidated by a parent or higher priority interrupt.

update ()
Check for existence, or the appropriate match on the expected value.

Returns FATILURE if not matched, SUCCESS otherwise.

Return type Status

13.5 py_trees.common

Common definitions, methods and variables used by the py_trees library.

class py_trees.common.BlackBoxLevel

Bases: enum. IntEnum

Whether a behaviour is a blackbox entity that may be considered collapsible (i.e. everything in its subtree will
not be visualised) by visualisation tools.

Blackbox levels are increasingly persistent in visualisations.

Visualisations by default, should always collapse blackboxes that represent DETAIL.

76

Chapter 13. Module API

https://docs.python.org/2/library/operator.html

py_trees Documentation, Release 0.7.6

BIG_PICTURE = 3
A blackbox that represents a big picture part of the entire tree view.

COMPONENT = 2
A blackbox that encapsulates a subgroup of functionalities as a single group.

DETAIL =1
A blackbox that encapsulates detailed activity.

NOT_A BLACKBOX = 4
Not a blackbox, do not ever collapse.

class py_trees.common.ClearingPolicy
Bases: enum. IntEnum

Policy rules for behaviours to dictate when data should be cleared/reset. Used by the subscribers module.

NEVER = 3
Never clear the data

ON_INITIALISE = 1
Clear when entering the initialise () method.

ON_SUCCESS = 2
Clear when returning SUCCESS.

class py_trees.common.Name
Bases: enum.Enum

Naming conventions.

AUTO_GENERATED = 'AUTO_GENERATED'
More Foo:py:data:~py_trees.common.Name. AUTO_GENERATED leaves it to the behaviour to generate a
useful, informative name.

class py_trees.common.ParallelPolicy
Bases: enum.Enum

Policy rules for Parallel composites.

SUCCESS_ON_ALL = 'SUCCESS_ON_ALL'
SUCCESS only when each and every child returns SUCCESS.

SUCCESS_ON_ONE = 'SUCCESS_ON_ONE'
SUCCESS so long as at least one child has SUCCESSS and the remainder are RUNNING

class py_trees.common.Status
Bases: enum.Enum

An enumerator representing the status of a behaviour

FAILURE = 'FAILURE'
Behaviour check has failed, or execution of its action finished with a failed result.

INVALID = 'INVALID'
Behaviour is uninitialised and inactive, i.e. this is the status before first entry, and after a higher priority
switch has occurred.

RUNNING = 'RUNNING'
Behaviour is in the middle of executing some action, result still pending.

SUCCESS = 'SUCCESS'
Behaviour check has passed, or execution of its action has finished with a successful result.

13.5. py_trees.common 77

py_trees Documentation, Release 0.7.6

class py_trees.common.VisibilityLevel
Bases: enum. IntEnum

Closely associated with the BlackBoxLevel for a behaviour. This sets the visibility level to be used for
visualisations.

Visibility levels correspond to reducing levels of visibility in a visualisation.

ALL =0
Do not collapse any behaviour.

BIG_PICTURE = 3
Collapse any blackbox that isn’t marked with BTG_PTCTURE.

COMPONENT = 2
Collapse blackboxes marked with COMPONENT or lower.

DETAIL =1
Collapse blackboxes marked with DETATL or lower.

common.string to_visibility level ()
Will convert a string to a visibility level. Note that it will quietly return ALL if the string is not matched to any
visibility level string identifier.

Parameters level (str)— visibility level as a string
Returns visibility level enum

Return type VisibilityLevel

13.6 py_trees.composites

Composites are the factories and decision makers of a behaviour tree. They are responsible for shaping the branches.

Sequence . / Parallel /

Tip: You should never need to subclass or create new composites.

Most patterns can be achieved with a combination of the above. Adding to this set exponentially increases the com-
plexity and subsequently making it more difficult to design, introspect, visualise and debug the trees. Always try
to find the combination you need to achieve your result before contemplating adding to this set. Actually, scratch
that. .. just don’t contemplate it!

Composite behaviours typically manage children and apply some logic to the way they execute and return a result,
but generally don’t do anything themselves. Perform the checks or actions you need to do in the non-composite
behaviours.

e Sequence: execute children sequentially

78 Chapter 13. Module API

py_trees Documentation, Release 0.7.6

* Selector: select a path through the tree, interruptible by higher priorities
* Chooser: like a selector, but commits to a path once started until it finishes
* Parallel: manage children concurrently

class py_trees.composites.Chooser (name="Chooser’, children=None, *args, **kwargs)
Bases: py_trees.composites.Selector

Choosers are Selectors with Commitment

High Priority Med Priority

A variant of the selector class. Once a child is selected, it cannot be interrupted by higher priority siblings. As
soon as the chosen child itself has finished it frees the chooser for an alternative selection. i.e. priorities only
come into effect if the chooser wasn’t running in the previous tick.

Note: This is the only composite in py_trees that is not a core composite in most behaviour tree implementa-
tions. Nonetheless, this is useful in fields like robotics, where you have to ensure that your manipulator doesn’t
drop it’s payload mid-motion as soon as a higher interrupt arrives. Use this composite sparingly and only if you
can’t find another way to easily create an elegant tree composition for your task.

Parameters
* name (str) — the composite behaviour name
e children ([Behaviour]) - list of children to add
* xargs — variable length argument list
* xxkwargs — arbitrary keyword arguments
__init__ (name=’Chooser’, children=None, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

tick ()

Run the tick behaviour for this chooser. Note that the status of the tick is (for now) always determined by
its children, not by the user customised update function.

Yields Behaviour — areference to itself or one of its children

class py_trees.composites.Composite (name=", children=None, *args, **kwargs)
Bases: py_trees.behaviour.Behaviour

13.6. py_trees.composites 79

py_trees Documentation, Release 0.7.6

The parent class to all composite behaviours, i.e. those that have children.
Parameters
* name (str) - the composite behaviour name
e children ([Behaviour]) - list of children to add
* xargs — variable length argument list
* xxkwargs — arbitrary keyword arguments

__init__ (name=", children=None, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

add_child (child)
Adds a child.

Parameters child (Behaviour) — child to add
Returns unique id of the child
Return type uuid.UUID

add_children (children)
Append a list of children to the current list.

Parameters children ([Behaviour]) - list of children to add

insert_child (child, index)

Insert child at the specified index. This simply directly calls the python list’s insert method using the
child and index arguments.

Parameters
e child (Behaviour) — child to insert
¢ index (int) —index to insert it at
Returns unique id of the child
Return type uuid.UUID

prepend_child (child)
Prepend the child before all other children.

Parameters child (Behaviour) - child to insert
Returns unique id of the child
Return type uuid.UUID

remove_all children ()
Remove all children. Makes sure to stop each child if necessary.

remove_child (child)
Remove the child behaviour from this composite.

Parameters child (Behaviour) — child to delete
Returns index of the child that was removed

Return type int

Todo: Error handling for when child is not in this list

80 Chapter 13. Module API

py_trees Documentation, Release 0.7.6

remove_child_by_id (child_id)
Remove the child with the specified id.

Parameters child_id (uuid.UUID) - unique id of the child
Raises IndexError — if the child was not found

replace_child (child, replacement)
Replace the child behaviour with another.

Parameters
e child (Behaviour) - child to delete
e replacement (Behaviour) — child to insert

setup (timeout)
Relays to each child’s setup () method in turn.

Parameters timeout (float) — time to wait (0.0 is blocking forever)
Returns suceess or failure of the operation
Return type bool

stop (new_status=<Status.INVALID: "INVALID’>)
There is generally two use cases that must be supported here.

1) Whenever the composite has gone to a recognised state (i.e. FATLURE or SUCCESS), or 2) when a
higher level parent calls on it to truly stop (INVALID).

In only the latter case will children need to be forcibly stopped as well. In the first case, they will have
stopped themselves appropriately already.

Parameters new_status (Status) — behaviour will transition to this new status

tip ()
Recursive function to extract the last running node of the tree.

Returns class::~py_trees.behaviour.Behaviour: the tip function of the current child of this com-
posite or None

class py_trees.composites.Parallel (name="Parallel’, policy=<ParallelPolicy.SUCCESS_ON_ALL:
"SUCCESS_ON_ALL’ >, children=None, *args,
**kwargs)
Bases: py trees.composites.Composite

Parallels enable a kind of concurrency

13.6. py_trees.composites 81

py_trees Documentation, Release 0.7.6

Parallel

Ticks every child every time the parallel is run (a poor man’s form of paralellism).
e Parallels will return FATLURE if any child returns FATLURE

e Parallels with policy SUCCESS_ON_ONE return SUCCESS if at least one child returns SUCCESS and
others are RUNNING.

e Parallels with policy SUCCESS_ON_ALL only returns SUCCESS if all children return SUCCESS

See also:

The py-trees-demo-context-switching program demos a parallel used to assist in a context switching scenario.

Parameters
* name (str) — the composite behaviour name
* policy (ParallelPolicy)— policy to use for deciding success or otherwise
e children ([Behaviour]) - list of children to add
* xargs — variable length argument list
* xxkwargs — arbitrary keyword arguments
__init__ (name=’Parallel’, policy=<ParallelPolicy.SUCCESS_ON_ALL: ’'SUCCESS_ON_ALL’>,

children=None, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

current_child
Have to check if there’s anything actually running first.

Returns the child that is currently running, or None
Return type Behaviour

tick()
Tick over the children.

Yields Behaviour — areference to itself or one of its children

class py_trees.composites.Selector (name="Selector’, children=None, *args, **kwargs)
Bases: py_trees.composites.Composite

Selectors are the Decision Makers

82 Chapter 13. Module API

py_trees Documentation, Release 0.7.6

High Priority Med Priority

A selector executes each of its child behaviours in turn until one of them succeeds (at which point it itself returns
RUNNING or SUCCESS, or it runs out of children at which point it itself returns AT L,URE. We usually refer to
selecting children as a means of choosing between priorities. Each child and its subtree represent a decreasingly
lower priority path.

Note: Switching from a low -> high priority branch causes a stop(INVALID) signal to be sent to the previously
executing low priority branch. This signal will percolate down that child’s own subtree. Behaviours should
make sure that they catch this and destruct appropriately.

Make sure you do your appropriate cleanup in the terminate () methods! e.g. cancelling a running goal, or
restoring a context.

See also:

The py-trees-demo-selector program demos higher priority switching under a selector.

Parameters
* name (str) — the composite behaviour name
e children ([Behaviour]) - list of children to add
* xargs — variable length argument list
* xxkwargs — arbitrary keyword arguments
__init__ (name=’Selector’, children=None, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__repr__ ()
Simple string representation of the object.

Returns string representation
Return type str

stop (new_status=<Status.INVALID: "INVALID >)
Stopping a selector requires setting the current child to none. Note that it is important to implement this
here instead of terminate, so users are free to subclass this easily with their own terminate and not have to
remember that they need to call this function manually.

Parameters new_status (Status) — the composite is transitioning to this new status

13.6. py_trees.composites 83

py_trees Documentation, Release 0.7.6

tick ()

Run the tick behaviour for this selector. Note that the status of the tick is always determined by its children,

not by the user customised update function.

Yields Behaviour — areference to itself or one of its children

class py_trees.composites.Sequence (name=’Sequence’, children=None, *args, **kwargs)

Bases: py_trees.composites.Composite

Sequences are the factory lines of Behaviour Trees

Sequence

Guard

A sequence will progressively tick over each of its children so long as each child returns SUCCESS. If any child

returns FAILURE or RUNNING the sequence will halt and the parent will adopt the result of
reaches the last child, it returns with that result regardless.

this child. If it

Note: The sequence halts once it sees a child is RUNNING and then returns the result. It does
the running behaviour.

not get stuck in

See also:

The py-trees-demo-sequence program demos a simple sequence in action.

Parameters
* name (str) — the composite behaviour name
e children ([Behaviour]) - list of children to add
* xargs — variable length argument list
* xxkwargs — arbitrary keyword arguments
__init__ (name=’Sequence’, children=None, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

current_child
Have to check if there’s anything actually running first.

Returns the child that is currently running, or None

Return type Behaviour

84 Chapter 13

. Module API

py_trees Documentation, Release 0.7.6

stop (new_status=<Status.INVALID: "INVALID’>)
Stopping a sequence requires taking care of the current index. Note that is important to implement this
here intead of terminate, so users are free to subclass this easily with their own terminate and not have to
remember that they need to call this function manually.

Parameters new_status (Status) — the composite is transitioning to this new status

tick ()
Tick over the children.

Yields Behaviour — areference to itself or one of its children

13.7 py_trees.console

Simple colour definitions and syntax highlighting for the console.

Colour Definitions
The current list of colour definitions include:
* Regular: black, red, green, yellow, blue, magenta, cyan, white,
e Bold: bold, bold_black, bold_red, bold_green, bold_yellow, bold_blue, bold_magenta, bold_cyan, bold_white

These colour definitions can be used in the following way:

import py_trees.console as console
print (console.cyan + " Name" + console.reset + ": " + console.yellow + "Dude" +_
—sconsole.reset)

py_trees.console.colours= [‘V’ ", ", "’ ", ", ", ", “’ ", ", "’ ",

List of all available colours.

py_trees.console.console_has_colours ()
Detects if the console (stdout) has colourising capability.

py_trees.console.has_colours = False
Whether the loading program has access to colours or not.

py_trees.console.logdebug (message)
Prefixes [DEBUG] and colours the message green.

Parameters message (str)— message to log.

py_trees.console.logerror (message)
Prefixes [ERROR] and colours the message red.

Parameters message (str) — message to log.

py_trees.console.logfatal (message)
Prefixes [FATAL] and colours the message bold red.

Parameters message (str)— message to log.

py_trees.console.loginfo (message)
Prefixes [INFO] to the message.

Parameters message (str) — message to log.

py_trees.console.logwarn (message)
Prefixes [WARN] and colours the message yellow.

13.7. py_trees.console 85

py_trees Documentation, Release 0.7.6

Parameters message (str)— message to log.

py_trees.console.read_single_keypress ()
Waits for a single keypress on stdin.

This is a silly function to call if you need to do it a lot because it has to store stdin’s current setup, setup stdin
for reading single keystrokes then read the single keystroke then revert stdin back after reading the keystroke.

Returns the character of the key that was pressed

Return type int

Raises KeyboardInterrupt —if CTRL-C was pressed (keycode 0x03)

13.8 py_trees.decorators

Decorators are behaviours that manage a single child and provide common modifications to their under-

lying child behaviour (e.g. inverting the result). i.e. they provide a means for behaviours to wear different
‘hats’ depending on their context without a behaviour tree.

i

An example:

Life

Have a Beer!

#!/usr/bin/env python

import py_ trees.decorators
import py_ trees.display

ST R

(continues on next page)

86 Chapter 13. Module API

py_trees Documentation, Release 0.7.6

(continued from previous page)

¢ |if i

lame_ . == '_ _main_
root = py_trees.composites.Sequence (name="Life")
timeout = py_trees.decorators.Timeout (
name="Timeout",
child=py_trees.behaviours.Success (name="Have a Beer!")
)
failure_is_success = py_trees.decorators.Inverter (
name="Inverter",
child=py_trees.behaviours.Success (name="Busy?")
)
root.add_children([failure_is_success, timeout])
py_trees.display.render_dot_tree (root)

Decorators (Hats)

Decorators with very specific functionality:

py_trees.decorators.Condition ()
py_trees.decorators.Inverter()
py_trees.decorators.OneShot ()

py_trees.decorators.TimeOut ()

And the X is Y family:

L]

py_trees.decorators.FailurelIsRunning()
py_trees.decorators.FailureIsSuccess ()
py_trees.decorators.RunningIsFailure ()
py_trees.decorators.RunningIsSuccess ()
py_trees.decorators.SuccessIsFailure ()

py_trees.decorators.SuccessIsRunning()

class py_trees.decorators.Condition (child, name=<Name. AUTO_GENERATED:

"AUTO_GENERATED’>, sta-

tus=<Status.SUCCESS: 'SUCCESS’>)
Bases: py._trees.decorators.Decorator

Encapsulates a behaviour and wait for it’s status to flip to the desired state. This behaviour will tick
with RUNNING while waiting and SUCCESS when the flip occurs.

__init__ (child, name=<Name. AUTO_GENERATED: ’'AUTO_GENERATED’>, sta-

tus=<Status.SUCCESS: "SUCCESS’>)
Initialise with child and optional name, status variables. :param child: the child to be decorated

:type child: Behaviour :param name: the decorator name (can be None) :type name: str
:param status: the desired status to watch for :type status: Status

update ()
SUCCESS if the decorated child has returned the specified status, otherwise RUNNING. This
decorator will never return FATLURE :returns: the behaviour’s new status Status :rtype:
Status

class py_trees.decorators.Decorator (child, name=<Name.AUTO_GENERATED:

"AUTO_GENERATED’>)

Bases: py_trees.behaviour.Behaviour

13.8. py_trees.decorators

87

py_trees Documentation, Release 0.7.6

A decorator is responsible for handling the lifecycle of a single child beneath

__init__ (child, name=<Name. AUTO_GENERATED: 'AUTO_GENERATED’>)
Common initialisation steps for a decorator - type checks and name construction (if None is
given).
Parameters
* name (str) - the decorator name (can be None)
e child (Behaviour) - the child to be decorated
Raises TypeError — if the child is not an instance of Behaviour

setup (timeout)
Relays to the decorated child’s set up () method. :param timeout: time to wait (0.0 is blocking
forever) :type timeout: float
Raises TypeError — if children’s setup methods fail to return a boolean
Returns suceess or failure of the operation
Return type bool

stop (new_status)
As with other composites, it checks if the child is running and stops it if that is the case. :param
new_status: the behaviour is transitioning to this new status :type new_status: Status

tick()
A decorator’s tick is exactly the same as a normal proceedings for a Behaviour’s tick except
that it also ticks the decorated child node.
Yields Behaviour — areference to itself or one of its children

class py_trees.decorators.FailureIsRunning (child,
name=<Name.AUTO_GENERATED:

'AUTO_GENERATED >)
Bases: py_trees.decorators.Decorator

Dont stop running.

update ()
Return the decorated child’s status unless it is FATLURE in which case, return RUNNING.
:returns: the behaviour’s new status Status :rtype: Status

class py_trees.decorators.FailureIsSuccess (child,
name=<Name.AUTO_GENERATED:

’AUTO_GENERATED >)
Bases: py_trees.decorators.Decorator

Be positive, always succeed.

update ()
Return the decorated child’s status unless it is FAILURE in which case, return SUCCESS.
:returns: the behaviour’s new status Status :rtype: Status

class py_trees.decorators.Inverter (child, name=<Name. AUTO_GENERATED:

"AUTO_GENERATED >)
Bases: py._ trees.decorators.Decorator

A decorator that inverts the result of a class’s update function.

__init_ (child, name=<Name. AUTO_GENERATED: 'AUTO_GENERATED’>)
Init with the decorated child.
Parameters
e child (Behaviour)— behaviour to time
* name (str) — the decorator name

update ()
Flip FATLURE and SUCCESS :returns: the behaviour’s new status Status :rtype: Status

88 Chapter 13. Module API

py_trees Documentation, Release 0.7.6

class py_trees.decorators.OneShot (child, name=<Name. AUTO_GENERATED:

"AUTO_GENERATED >)
Bases: py_trees.decorators.Decorator

A decorator that implements the oneshot pattern. This decorator ensures that the underlying child
is ticked through to successful completion just once and while doing so, will return with the same
status as it’s child. Thereafter it will return SUCCESS.

See also:
py_trees.idioms.oneshot ()

__init__ (child, name=<Name. AUTO_GENERATED: 'AUTO_GENERATED’>)
Init with the decorated child.
Parameters
* child (Behaviour) - behaviour to time
¢ name (str) - the decorator name

terminate (new_status)
If returning SUCCESS for the first time, flag it so future ticks will block entry to the child.

tick()
Select between decorator (single child) and behaviour (no children) style ticks depending on
whether or not the underlying child has been ticked successfully to completion previously.

update ()
Bounce if the child has already successfully completed.

class py_trees.decorators.RunningIsFailure (child,
name=<Name. AUTO_GENERATED:

"AUTO_GENERATED’>)
Bases: py_trees.decorators.Decorator

Got to be snappy! We want results. . . yesterday!

update ()
Return the decorated child’s status unless it is RUNNING in which case, return FAILURE.
:returns: the behaviour’s new status Status :rtype: Status

class py_trees.decorators.RunningIsSuccess (child,
name=<Name. AUTO_GENERATED:

"AUTO_GENERATED’>)
Bases: py_trees.decorators.Decorator

Don’t hang around. . .

update ()
Return the decorated child’s status unless it is RUNNING in which case, return SUCCESS.
:returns: the behaviour’s new status Status :rtype: Status

class py_trees.decorators.SuccessIsFailure (child,
name=<Name. AUTO_GENERATED:

"AUTO_GENERATED>)
Bases: py_trees.decorators.Decorator

Be depressed, always fail.

update ()
Return the decorated child’s status unless it is SUCCESS in which case, return FAILURE.
:returns: the behaviour’s new status Status :rtype: Status

13.8. py_trees.decorators 89

py_trees Documentation, Release 0.7.6

class py_trees.decorators.SuccessIsRunning (child,
name=<Name. AUTO_GENERATED:

"AUTO_GENERATED >)
Bases: py_trees.decorators.Decorator

It never ends. ..

update ()
Return the decorated child’s status unless it is SUCCESS in which case, return RUNNING.
:returns: the behaviour’s new status Status :rtype: Status

class py_trees.decorators.Timeout (child, name=<Name. AUTO_GENERATED:

"AUTO_GENERATED’>, duration=5.0)
Bases: py. trees.decorators.Decorator

A decorator that applies a timeout pattern to an existing behaviour. If the timeout is reached, the
encapsulated behaviour’s stop () method is called with status FATLURE otherwise it will simply
directly tick and return with the same status as that of it’s encapsulated behaviour.

__init__ (child, name=<Name.AUTO_GENERATED: ’'AUTO_GENERATED’>, dura-

tion=5.0)
Init with the decorated child and a timeout duration.

Parameters
e child (Behaviour) - behaviour to time
¢ name (str) - the decorator name
* duration (float) —timeout length in seconds

initialise ()
Reset the feedback message and finish time on behaviour entry.

update ()
Terminate the child and return AT LURE if the timeout is exceeded.

13.9 py_trees.display

Behaviour trees are significantly easier to design, monitor and debug with visualisations. Py Trees does provide
minimal assistance to render trees to various simple output formats. Currently this includes dot graphs, strings or
stdout.

py_trees.display.ascii_bullet (node)
Generate a text bullet for the specified behaviour’s type.

Parameters node (Behaviour)— convert this behaviour’s type to text
Returns the text bullet
Return type str)

py_trees.display.ascii_check_mark (sfatus)
Generate a text check mark for the specified status.

Parameters status (Status) — convert this status to text
Returns the text check mark
Return type str)

py_trees.display.ascii_tree (tree, indent=0, snapshot_information=None)
Build an ascii tree representation as a string for redirecting to elsewhere other than stdout. This can be the entire
tree, or a recorded snapshot of the tree (i.e. just the part that was traversed).

Parameters

90 Chapter 13. Module API

py_trees Documentation, Release 0.7.6

* tree (Behaviour) —the root of the tree, or subtree you want to show
¢ indent (int) — the number of characters to indent the tree

* snapshot_information (visitors) — a visitor that recorded information about a
traversed tree (e.g. SnapshotVisitor)

* snapshot_information — a visitor that recorded information about a traversed tree
(e.g. SnapshotVisitor)

Returns an ascii tree (i.e. in string form)

Return type str

Examples

Use the SnapshotVisitor and BehaviourTree to generate snapshot information at each tick and feed
that to a post tick handler that will print the traversed ascii tree complete with status and feedback messages.

-- running

def post_tick_handler (snapshot_visitor, behaviour_tree):
print (py_trees.display.ascii_tree (behaviour_tree.root,
snapshot_information=snapshot_visitor))

root = py_trees.composites.Sequence ("Sequence™)
for action in ["Action 1", "Action 2", "Action 3"]:
b = py_trees.behaviours.Count (
name=action,
fail_until=o0,
running_until=1,
success_until=10)
root.add_child (b)
behaviour_tree = py_trees.trees.BehaviourTree (root)
snapshot_visitor = py_trees.visitors.SnapshotVisitor ()
behaviour_tree.add_post_tick_handler (
functools.partial (post_tick_handler,
snapshot_visitor))
behaviour_tree.visitors.append(snapshot_visitor)

py_trees.display.generate_pydot_graph (root, visibility_level, collapse_decorators=False)
Generate the pydot graph - this is usually the first step in rendering the tree to file. See also
render_dot_tree ().

Parameters
e root (Behaviour) - the root of a tree, or subtree

e ((visibility_level) — class‘~py_trees.common.VisibilityLevel): collapse subtrees
at or under this level

* collapse_decorators (bool) — only show the decorator (not the child)
Returns graph
Return type pydot.Dot

13.9. py_trees.display 91

py_trees Documentation, Release 0.7.6

py_trees.display.print_ascii_tree (root, indent=0, show_status=False)
Print the ASCII representation of an entire behaviour tree.

Parameters
* root (Behaviour) — the root of the tree, or subtree you want to show
¢ indent (int) — the number of characters to indent the tree

* show_status (bool) — additionally show feedback message and status of every element

Examples

Render a simple tree in ascii format to stdout.

root = py_trees.composites.Sequence ("Sequence™)
for action in ["Action 1", "Action 2", "Action 3"]:
b = py_trees.behaviours.Count (
name=action,
fail_until=o0,
running_until=1,
success_until=10)
root.add_child (b)
py_trees.display.print_ascii_tree (root)

Tip: To additionally display status and feedbback message from every behaviour in the tree, simply set the
show_status flag to True.

py_trees.display.render_dot_tree (root, visibility_level=<VisibilityLevel DETAIL: 1>, col-

lapse_decorators=False, name=None)
Render the dot tree to .dot, .svg, .png. files in the current working directory. These will be named with the root

behaviour name.
Parameters
* root (Behaviour) - the root of a tree, or subtree

* ((visibility_level) — class‘~py_trees.common.VisibilityLevel): collapse subtrees
at or under this level

* collapse_decorators (bool) — only show the decorator (not the child)

* name (str)— name to use for the created files (defaults to the root behaviour name)

Example

Render a simple tree to dot/svg/png file:

92 Chapter 13. Module API

py_trees Documentation, Release 0.7.6

Sequence

Guard

root = py_trees.composites.Sequence ("Sequence")
for job in ["Action 1", "Action 2", "Action 3"]:
success_after_two = py_trees.behaviours.Count (name=job,
fail_until=o0,
running_until=1,
success_until=10)
root.add_child(success_after_two)
py_trees.display.render_dot_tree (root)

Tip: A good practice is to provide a command line argument for optional rendering of a program so users can
quickly visualise what tree the program will execute.

py_trees.display.stringify dot_tree (root)
Generate dot tree graphs and return a string representation of the dot graph.

Parameters root (Behaviour) — the root of a tree, or subtree
Returns dot graph as a string

Return type str

13.10 py_trees.meta

Attention: This module is the least likely to remain stable in this package. It has only received cursory attention
so far and a more thoughtful design for handling behaviour ‘hats’ might be needful at some point in the future.

Meta behaviours are created by utilising various programming techniques pulled from a magic bag of tricks. Some
of these minimise the effort to generate a new behaviour while others provide mechanisms that greatly expand your
library of usable behaviours without having to increase the number of explicit behaviours contained therein. The latter
is achieved by providing a means for behaviours to wear different ‘hats’ via python decorators.

13.10. py_trees.meta 93

py_trees Documentation, Release 0.7.6

Each function or decorator listed below includes its own example code demonstrating its use.
Factories
* py_trees.meta.create_behaviour_from function()
* py_trees.meta.create_imposter ()
Decorators (Hats)
* py_trees.meta.condition()
* py_trees.meta.inverter()
* py_trees.meta.failure_is_running()
* py_trees.meta.failure is_success ()
* py_trees.meta.oneshot ()
* py_trees.meta.running_is_failure ()
* py_trees.meta.running_1is_success ()
* py_trees.meta.success_1is_failure()
* py_trees.meta.success_1s_running/()
* py_trees.meta.timeout ()

py_trees.meta.condition (cls, status)
Encapsulates a behaviour and wait for it’s status to flip to the desired state. This behaviour will tick with
RUNNING while waiting and SUCCESS when the flip occurs.

Parameters
* cls (Behaviour) — an existing behaviour class type
e status (Status) — the desired status to watch for
Returns the modified behaviour class

Return type Behaviour

Examples

@condition (py_trees.common.Status.RUNNING)
class HangingAbout (WillStartSoon)
pass

or

hanging_about = condition(WillStartSoon, py_trees.common.Status.RUNNING) (name=
—"Hanging About")

94 Chapter 13. Module API

py_trees Documentation, Release 0.7.6

py_trees.meta.create_behaviour_from_function (func)
Create a behaviour from the specified function, dropping it in for the Behaviour update () method. Ths
function must include the self argument and return a Status value. It also automatically provides a drop-in
for the terminate () method that clears the feedback message. Other methods are left untouched.

Parameters func (function) - adrop-in for the update () method

py_trees.meta.create_imposter (cls)
Creates a new behaviour type impersonating (encapsulating) another behaviour type.

This is primarily used to develop other decorators but can also be useful in itself. It takes care of the handles
responsible for making the encapsulation work and leaves you with just the task of replacing the relevant modi-
fications (usually to the update () method). The modifications can be made by direct replacement of methods
or by inheriting and overriding them. See the examples below.

Parameters cls (Behaviour) — an existing behaviour class type
Returns the new encapsulated behaviour class

Return type Behaviour

Examples

Replacing methods:

def _update(self):
self.original.tick_once()
if self.original.status == common.Status.FAILURE:
return common.Status.SUCCESS
else:
return self.original.status

FailureIsSuccess = create_imposter (py_trees.behaviours.Failure)
setattr (FailureIsSuccess, "update", _update)

Subclassing and overriding:

class FailurelsSuccess (create_imposter (py_trees.behaviours.Failure)):

def _ _init__ (self, =xargs, =**kwargs):
super (FailurelIsSuccess, self)._ _init__ (xargs, =**kwargs)

def update (self):
self.original.tick_once ()
if self.original.status == common.Status.FAILURE:
return common.Status.SUCCESS
else:
return self.original.status

py_trees.meta.failure_is_running (cls)
Dont stop running.

Parameters cls (Behaviour) — an existing behaviour class type
Returns the modified behaviour class

Return type Behaviour

13.10. py_trees.meta 95

py_trees Documentation, Release 0.7.6

Examples

@failure_is_running
class MustGoOnRegardless (ActingLikeAGoon)
pass

or

must_go_on_regardless = failure_is_running(ActingLikeAGoon) (name="Goon")

py_trees.meta.failure_is_success (cls)
Be positive, always succeed.

Parameters cls (Behaviour) — an existing behaviour class type
Returns the modified behaviour class

Return type Behaviour

Examples

@failure_is_success
class MustGoOnRegardless (ActedLikeAGoon)
pass

or

must_go_on_regardless = failure_is_success (ActedLikeAGoon) (name="Goon")

py_trees.meta.inverter (cls)
A decorator that inverts the result of a class’s update function.

Parameters cls (Behaviour)— an existing behaviour class type
Returns the modified behaviour class

Return type Behaviour

Examples

@inverter
class Failure (Success)
pass

or

failure = inverter (Success) ("Failure™)

py_trees.meta.running is_failure (cls)
Got to be snappy! We want results. . . yesterday!

Parameters cls (Behaviour)— an existing behaviour class type
Returns the modified behaviour class

Return type Behaviour

96 Chapter 13

. Module API

py_trees Documentation, Release 0.7.6

Examples

@running_is_failure
class NeedResultsNow (Pontificating)
pass

or

need_results_now = running_is_failure(Pontificating) ("Greek Philosopher")

py_trees.meta.running is_success (cls)
Don’t hang around. ..

Parameters cls (Behaviour) — an existing behaviour class type
Returns the modified behaviour class

Return type Behaviour

Examples

@running_ is_success
class DontHangAround (Pontificating)
pass

or

dont_hang_around = running_is_success (Pontificating) ("Greek Philosopher")

py_trees.meta.success_is_failure (cls)
Be depressed, always fail.

Parameters cls (Behaviour)— an existing behaviour class type
Returns the modified behaviour class

Return type Behaviour

Examples

@success_is_failure
class TheEndIsNigh (ActingLikeAGoon)
pass

or

the_end_is_nigh = success_is_failure (ActingLikeAGoon) (name="Goon")

py_trees.meta.success_is_running (cls)
It never ends. . .

Parameters cls (Behaviour)— an existing behaviour class type
Returns the modified behaviour class

Return type Behaviour

13.10. py_trees.meta

97

py_trees Documentation, Release 0.7.6

Examples

@success_is_running
class TheEndIsSillNotNigh (ActingLikeAGoon)
pass

or

the_end_is_still_not_nigh = success_is_running(ActingLikeAGoon) (name="Goon")

py_trees.meta.timeout (cls, duration)
A decorator that applies a timeout pattern to an existing behaviour. If the timeout is reached, the encapsulated
behaviour’s stop () method is called with status FAILURE otherwise it will simply directly tick and return
with the same status as that of it’s encapsulated behaviour.

Parameters
* cls (Behaviour)— an existing behaviour class type
* duration (float) - timeout length in seconds
Returns the modified behaviour class with timeout

Return type Behaviour

Examples

@py_trees.meta.timeout (10)
class WorkBehaviour (py_trees.behaviour.Behaviour)

or

’work_with_timeout = py_trees.meta.timeout (WorkBehaviour, 10.0) (name="Work")

13.11 py_trees.timers

Time related behaviours.

class py_trees.timers.Timer (name="Timer’, duration=5.0)
Bases: py._trees.behaviour.Behaviour

Simple timer class that is RUNNING until the timer runs out, at which point it is SUCCESS. This can be used in
a wide variety of situations - pause, duration, timeout depending on how it is wired into the tree (e.g. pause in a
sequence, duration/timeout in a parallel).

The timer gets reset either upon entry (initialise ()) if it hasn’t already been set and gets cleared when it
either runs out, or the behaviour is interrupted by a higher priority or parent cancelling it.

Parameters
* name (str)—name of the behaviour

* duration (int) —length of time to run (in seconds)

Note: This succeeds the first time the behaviour is ticked after the expected finishing time.

98 Chapter 13. Module API

py_trees Documentation, Release 0.7.6

Tip: Usethe running is_failure () decorator if you need FATLURE until the timer finishes.

__init_ (name=’Timer’, duration=>5.0)

Initialize self. See help(type(self)) for accurate signature.
initialise()

Store the expected finishing time.

terminate (new_status)
Clear the expected finishing time.

update ()
Check current time against the expected finishing time. If it is in excess, flip to SUCCESS.

13.12 py_trees.trees

While a graph of connected behaviours and composites form a tree in their own right (i.e. it can be initialised and
ticked), it is usually convenient to wrap your tree in another class to take care of alot of the housework and provide
some extra bells and whistles that make your tree flourish.

This package provides a default reference implementation that is directly usable, but can also be easily used as inspi-
ration for your own tree custodians.

class py_trees.trees.BehaviourTree (100t)
Bases: object

Grow, water, prune your behaviour tree with this, the default reference implementation. It features a few en-
hancements to provide richer logging, introspection and dynamic management of the tree itself:

 Pre and post tick handlers to execute code automatically before and after a tick
* Visitor access to the parts of the tree that were traversed in a tick
* Subtree pruning and insertion operations
» Continuous tick-tock support
See also:

The py-trees-demo-tree-stewardship program demonstrates the above features.

13.12. py_trees.trees 99

py_trees Documentation, Release 0.7.6

Parameters root (Behaviour)—root node of the tree
Variables
* count (int)— number of times the tree has been ticked.
e root (Behaviour) —root node of the tree
* visitors ([visitors])— entities that visit traversed parts of the tree when it ticks
* pre_tick_handlers ([func]) — functions that run before the entire tree is ticked
e post_tick handlers ([func]) — functions that run after the entire tree is ticked
Raises AssertionError — if incoming root variable is not the correct type
add_post_tick_handler (handler)

Add a function to execute after the tree has ticked. The function must have a single argument of type
BehaviourTree.

Some ideas that are often used:
* logging
» modifications on the tree itself (e.g. closing down a plan)
* sending data to visualisation tools

* introspect the state of the tree to make and send reports
Parameters handler (func) — function

add_pre_tick_handler (handler)
Add a function to execute before the tree is ticked. The function must have a single argument of type
BehaviourTree.

Some ideas that are often used:
* logging (to file or stdout)

» modifications on the tree itself (e.g. starting a new plan)
Parameters handler (func) - function
destroy ()

Destroy the tree by stopping the root node.

insert_subtree (child, unique_id, index)
Insert a subtree as a child of the specified parent. If the parent is found, this directly calls the parent’s
insert_child () method using the child and index arguments.

Parameters

e child (Behaviour) - subtree to insert

* unique_id (uuid.UUID) - unique id of the parent

e index (int) — insert the child at this index, pushing all children after it back one.
Returns suceess or failure (parent not found) of the operation
Return type bool

Raises AssertionError — if the parent is nota Composite

100 Chapter 13. Module API

py_trees Documentation, Release 0.7.6

Todo: Could use better, more informative error handling here. Especially if the insertion has its own error
handling (e.g. index out of range). Could also use a different api that relies on the id of the sibling node it
should be inserted before/after.

interrupt ()
Interrupt tick-tock if it is tick-tocking. Note that this will permit a currently executing tick to finish before
interrupting the tick-tock.

prune_subtree (unique_id)
Prune a subtree given the unique id of the root of the subtree.

Parameters unique_id (uuid.UUID) - unique id of the subtree root
Returns success or failure of the operation

Return type bool

Raises AssertionError —if unique id is the behaviour tree’s root node id

replace_subtree (unique_id, subtree)
Replace the subtree with the specified id for the new subtree. This is a common pattern where we’d like to
swap out a whole sub-behaviour for another one.

Parameters
* unique_id (uuid. UUID) - unique id of the parent

e subtree (Behaviour) —root behaviour of the subtree
Raises AssertionError: if unique id is the behaviour tree’s root node id

Returns suceess or failure of the operation

Return type bool

setup (timeout)
Relays to calling the setup () method on the root behaviour. This in turn should get recursively
called down through the entire tree.
Parameters timeout (float) — time to wait (0.0 is blocking forever)
Returns suceess or failure of the operation
Return type bool
tick (pre_tick_handler=None, post_tick_handler=None)
Tick the tree just once and run any handlers before and after the tick. This optionally accepts some one-

shot handlers (c.f. those added by add_pre_tick handler () and add _post_tick handler ()
which will be automatically run every time).

The handler functions must have a single argument of type BehaviourTree.
Parameters
* pre_tick_handler (func) — function to execute before ticking

* post_tick_handler (func) — function to execute after ticking

13.12. py_trees.trees 101

py_trees Documentation, Release 0.7.6

tick_tock (sleep_ms, number_of _iterations=-1, pre_tick_handler=None, post_tick_handler=None)
Tick continuously with a sleep interval as specified. This optionally accepts some handlers that will
be used for the duration of this tick tock (c.f. those added by add pre tick_handler () and
add_post_tick_handler () which will be automatically run every time).

The handler functions must have a single argument of type BehaviourTree.
Parameters
* sleep_ms (float) - sleep this much between ticks (milliseconds)
e number_of_ iterations (int) - number of iterations to tick-tock
* pre_tick_handler (func) — function to execute before ticking

* post_tick_handler (func) — function to execute after ticking

tip()
Get the tip of the tree. This corresponds to the the deepest node that was running before the subtree

traversal reversed direction and headed back to this node.
Returns child behaviour, itself or None if its status is TNVALID
Return type Behaviour or None

See also:

tip ()

13.13 py_trees.utilities

Assorted utility functions.

py_trees.utilities.static_variables (**kwargs)
This is a decorator that can be used with python methods to attach initialised static variables to the method.

@static_variables (counter=0)
def foo():
foo.counter += 1
print ("Counter: ".format (foo.counter))

py_trees.utilities.which (program)
Wrapper around the command line ‘which’ program.

Parameters program (str) — name of the program to find.
Returns path to the program or None if it doesnt exist.

Return type str

13.14 py_trees.visitors

Visitors are entities that can be passed to a tree implementation (e.g. BehaviourTree) and used to either visit each
and every behaviour in the tree, or visit behaviours as the tree is traversed in an executing tick. At each behaviour, the
visitor runs its own method on the behaviour to do as it wishes - logging, introspecting, etc.

102 Chapter 13. Module API

py_trees Documentation, Release 0.7.6

Warning: Visitors should not modify the behaviours they visit.

class py_trees.visitors.DebugVisitor
Bases: py_trees.visitors.VisitorBase

Picks up and logs feedback messages and the behaviour’s status. Logging is done with the behaviour’s logger.

run (behaviour)
This method gets run as each behaviour is ticked. Override it to perform some activity - e.g. introspect the
behaviour to store/process logging data for visualisations.

Parameters behaviour (Behaviour)—behaviour that is ticking

class py_trees.visitors.SnapshotVisitor (full=False)
Bases: py_trees.visitors.VisitorBase

Visits the tree in tick-tock, recording runtime information for publishing the information as a snapshot view of
the tree after the iteration has finished.

Parameters full (bool) - flag to indicate whether it should be used to visit only traversed nodes
or the entire tree

Variables
* nodes (dict) — dictionary of behaviour id (uuid.UUID) and status (St atus) pairs

* running nodes ([uuid.UUID]) - list of id’s for behaviours which were traversed in
the current tick

* previously running nodes ([uuid.UUID]) — list of id’s for behaviours which
were traversed in the last tick

See also:

This visitor is used with the BehaviourTree class to collect information and ascii_tree () to display
information.
initialise()
Switch running to previously running and then reset all other variables. This will get called before a tree
ticks.

run (behaviour)
This method gets run as each behaviour is ticked. Catch the id and status and store it. Additionally add it
to the running list if it is RUNNING.

Parameters behaviour (Behaviour) — behaviour that is ticking

class py_trees.visitors.VisitorBase (full=False)
Bases: object

Parent template for visitor types.

Visitors are primarily designed to work with BehaviourTree but they can be used in the same way for other
tree custodian implementations.

Parameters full (bool) - flag to indicate whether it should be used to visit only traversed nodes
or the entire tree

Variables full (bool) - flag to indicate whether it should be used to visit only traversed nodes or
the entire tree
initialise()
Override this method if any resetting of variables needs to be performed between ticks (i.e. visitations).

13.14. py_trees.visitors 103

py_trees Documentation, Release 0.7.6

run (behaviour)
This method gets run as each behaviour is ticked. Override it to perform some activity - e.g. introspect the
behaviour to store/process logging data for visualisations.

Parameters behaviour (Behaviour) — behaviour that is ticking

104 Chapter 13. Module API

cHAPTER 14

Changelog

14.1 Forthcoming

14.2 0.7.6 (2021-01-10)

* [infra] skipping archived 0.7.4 and 0.7.5 versions that were dropped in favour of a push to 1.0.x

14.3 0.7.4 (2021-01-10)

* [decorators] setting the child’s parent as the decorator

14.4 0.7.3 (202019-08-02)

¢ [infra] fix cmake version, zip_safe build warnings for catkin

14.5 0.7.2 (202019-08-02)

* [docs] fix some warnings

14.6 0.7.1 (202019-07-28)

* [infra] scripts using python3

105

py_trees Documentation, Release 0.7.6

14.7 0.7.0 (202019-07-28)

* [infra] python3 ROS environment support (if using virtualenvs, was already python3 compatible)

14.8 0.6.7 (2019-02-13)

* [decorators] default option for collapsing decorators (resolves py_trees_ros bug)

14.9 0.6.6 (2019-02-13)

[decorators] new-style decorators can be found in py_trees.decorators [decorators] new-style decorators now stop their
running child on completion (SUCCESSIIFAILURE) [decorators] onshot now activates upon successful completion
(SUCCESS only), previously on any completion (SUCCESSIIFAILURE) [meta] behaviours from functions can now
automagically generate names

14.10 0.6.5 (2018-09-19)

* Inverters bugfix - pick up missing feedback messages

¢ Eliminate costly blackboard variable check feedback message

14.11 0.6.4 (2018-09-19)

* Ascii tree bugfix - replace awkward newlines with spaces

14.12 0.6.3 (2018-09-04)

* Parallels bugfix - don’t send own status to running children, invalidate them instead

14.13 0.6.2 (2018-08-31)

* Oneshot bugfix - react to priority interrupts correctly

14.14 0.6.1 (2018-08-20)

* Oneshot bugfix - no longer permanently modifies the original class

14.15 0.6.0 (2018-05-15)

* Python 2/3 compatibility

106 Chapter 14. Changelog

py_trees Documentation, Release 0.7.6

14.16 0.5.10 (2017-06-17)

* [meta] add children monkeypatching for composite imposters

¢ [blackboard] check for nested variables in WaitForBlackboard

14.17 0.5.9 (2017-03-25)

* [docs] bugfix image links and rewrite the motivation

14.18 0.5.8 (2017-03-19)

* [infra] setup.py tests_require, not test_require

14.19 0.5.7 (2017-03-01)

* [infra] update maintainer email

14.20 0.5.5 (2017-03-01)

* [docs] many minor doc updates

[meta] bugfix so that imposter now ticks over composite children
* [trees] method for getting the tip of the tree

* [programs] py-trees-render program added

14.21 0.5.4 (2017-02-22)

* [infra] handle pypi/catkin conflicts with install_requires

14.22 0.5.2 (2017-02-22)

¢ [docs] disable colour when building
* [docs] sidebar headings

* [docs] dont require project installation

14.23 0.5.1 (2017-02-21)

* [infra] pypi package enabled

14.16. 0.5.10 (2017-06-17)

107

py_trees Documentation, Release 0.7.6

14.24 0.5.0 (2017-02-21)

* [ros] components moved to py_trees_ros

¢ [timeout] bugfix to ensure timeout decorator initialises properly
¢ [docs] rolled over with napolean style

* [docs] sphinx documentation updated

* [imposter] make sure tip() drills down into composites

* [demos] re-organised into modules

14.25 0.4.0 (2017-01-13)

* [trees] add pre/post handlers after setup, just in case setup fails

* [introspection] do parent lookups so you can crawl back up a tree

[blackboard] permit init of subscriber2blackboard behaviours

[blackboard] watchers
e [timers] better feedback messages

* [imposter] ensure stop() directly calls the composited behaviour

14.26 0.3.0 (2016-08-25)

e failure_is_running decorator (meta).

14.27 0.2.0 (2016-06-01)

* do terminate properly amongst relevant classes
* blackboxes

* chooser variant of selectors

* bugfix the decorators

* blackboard updates on change only
 improved dot graph creation

* many bugfixes to composites

* subscriber behaviours

¢ timer behaviours

108 Chapter 14. Changelog

py_trees Documentation, Release 0.7.6

14.28 0.1.2 (2015-11-16)

* one shot sequences

* abort() renamed more appropriately to stop()

14.29 0.1.1 (2015-10-10)

* lots of bugfixing stabilising py_trees for the spain field test

* complement decorator for behaviours

* dot tree views

* ascii tree and tick views

* use generators and visitors to more efficiently walk/introspect trees

* afirst implementation of behaviour trees in python

14.28. 0.1.2 (2015-11-16) 109

py_trees Documentation, Release 0.7.6

110 Chapter 14. Changelog

cHAPTER 15

Indices and tables

* genindex
* modindex

e search

111

py_trees Documentation, Release 0.7.6

112 Chapter 15. Indices and tables

Python Module Index

P

py_trees,

py_trees
py_trees
py_trees
py_trees
py_trees
py_trees
py_trees
py_trees

py_trees.

py_trees
py_trees
py_trees
py_trees
py_trees
py_trees
py_trees
py_trees
py_trees
py_trees
py_trees
py_trees
py_trees

67

.demos
demos.
.demos
.demos
.demos.
.demos.
.demos.
.demos.
.display, 90
.meta, 93
.programs.render, 65
.timers, 98

.trees,
.utilities, 102
.visitors, 102

.behaviour, 67
.behaviours, 70
.blackboard, 73
. common, 76
.composites, 78
.console, 85
.decorators, 86

.action, 35
blackboard, 43
.context_switching, 46
.dot_graphs, 51
lifecycle, 39
selector, 54
sequence, 57
stewardship, 60

99

113

py_trees Documentation, Release 0.7.6

114 Python Module Index

Index

Symbols

init ()
79

__init__ () (py_trees.composites.Composite method),
80

__init__ () (py_trees.composites.Parallel method), 82

__init__ () (py_trees.composites.Selector method),
83

__init__ () (py_trees.composites.Sequence method),
84

__init__ () (py_trees.decorators.Condition method),
87

__init__ () (py_trees.decorators.Decorator method),
88

__init__ () (py_trees.decorators.Inverter method), 88

__init__ () (py_trees.decorators.OneShot method),
89

__init__ () (py_trees.decorators.Timeout method), 90

(py_trees.composites.Chooser method),

(py_trees.trees.BehaviourTree method), 100
ALL (py_trees.common.VisibilityLevel attribute), 78
ascii_bullet () (in module py_trees.display), 90
ascii_check_mark () (in module py_trees.display),
90
ascii_tree () (in module py_trees.display), 90
AUTO_GENERATED (py_trees.common.Name attribute),
77

B

Behaviour (class in py_trees.behaviour), 67
BehaviourTree (class in py_trees.trees), 99
BIG_PICTURE (py_trees.common.BlackBoxLevel at-
tribute), 76
BIG_PICTURE
attribute), 78
Blackboard (class in py_trees.blackboard), 73
BlackboardWriter (class in
py_trees.demos.blackboard), 43
BlackBoxLevel (class in py_trees.common), 76

(py_trees.common. VisibilityLevel

‘gtch

CheckBlackboardVariable
py_trees.blackboard), 74

(class in

__init__ () (py_trees.demos.action.Action method),
35
__init__ () (py_trees.demos. blackboard.BlackboardWrifed-ocking, 31
method), 43
__init__ () (py_trees.demos.context_switching.ContextS
method), 47
__dinit__ () (py_trees.demos.lifecycle. Counter
method), 39

__init__ () (py_trees.timers.Timer method), 99
__repr__ () (py_trees.composites.Selector method),
83

A

Action (class in py_trees.demos.action), 35
add_child() (py_trees.composites. Composite
method), 80
add_children ()
method), 80
add_post_tick_handler ()
(py_trees.trees.BehaviourTree method), 100
add_pre_tick_handler ()

(py_trees.composites. Composite

Chooser (class in py_trees.composites), 79
ClearBlackboardVariable (class in
py_trees.blackboard), 75
ClearingPolicy (class in py_trees.common), 77
colours (in module py_trees.console), 85
COMPONENT (py_trees.common.BlackBoxLevel
tribute), 77
COMPONENT (py_trees.common.VisibilityLevel
tribute), 78
Composite (class in py_trees.composites), 79
Condition (class in py_trees.decorators), 87
condition () (in module py_trees.meta), 94
console_has_colours() (in
py_trees.console), 85

at-

at-

module

115

py_trees Documentation, Release 0.7.6

ContextSwitch (class in
py_trees.demos.context_switching), 47

Count (class in py_trees.behaviours), 70

Counter (class in py_trees.demos.lifecycle), 39

create_behaviour_from_function () (in mod-
ule py_trees.meta), 94

create_imposter () (in module py_trees.meta), 95

current_child (py_trees.composites.Parallel at-
tribute), 82

current_child (py_trees.composites.Sequence at-
tribute), 84

D

DebugVisitor (class in py_trees.visitors), 103

Decorator (class in py_trees.decorators), 87

destroy () (py_trees.trees.BehaviourTree
100

DETAIL (py_trees.common.BlackBoxLevel attribute), 77

DETAIL (py_trees.common.VisibilityLevel attribute), 78

F

Failure (class in py_trees.behaviours), 71

FAILURE (py_trees.common.Status attribute), 77

failure_is_running () (in module py_trees.meta),
95

failure_is_success () (in module py_trees.meta),
96

FailureIsRunning (classin py_trees.decorators), 88

FailureIsSuccess (classin py_trees.decorators), 88

flying spaghetti monster, 31

fsm, 31

G

generate_pydot_graph ()
py_trees.display), 91
get () (py_trees.blackboard.Blackboard method), 74

Fl

has_colours (in module py_trees.console), 85
has_parent_with_instance_type ()

method),

(in module

(py_trees.behaviour.Behaviour method),
68

has_parent_with_name ()
(py_trees.behaviour. Behaviour method),

68

initialise ()

method), 68

(py_trees.behaviour.Behaviour

initialise () (py_trees.blackboard.SetBlackboardVariable

method), 75

initialise () (py_trees.blackboard WaitForBlackboardVariable
method), 76

initialise () (py_trees.decorators.Timeout method),
90

initialise () (py_trees.demos.action.Action
method), 35

initialise () (py_trees.demos.context_switching. ContextSwitch
method), 47

initialise () (py_trees.demos.lifecycle. Counter

method), 40

initialise () (py_trees.timers.Timer method), 99

initialise() (py_trees.visitors.SnapshotVisitor
method), 103

initialise () (py_trees.visitors.VisitorBase method),
103

insert_child()
method), 80

insert_subtree ()
method), 100

interrupt () (py_trees.trees.BehaviourTree method),
101

INVALID (py_trees.common.Status attribute), 77

Inverter (class in py_trees.decorators), 88

inverter () (in module py_trees.meta), 96

iterate () (py_trees.behaviour.Behaviour method), 68

L

logdebug () (in module py_trees.console), 85
logerror () (in module py_trees.console), 85
logfatal () (in module py_trees.console), 85
loginfo () (in module py_trees.console), 85
logwarn () (in module py_trees.console), 85

M

main () (in module py_trees.demos.action), 36

main () (in module py_trees.demos.blackboard), 43

main () (in module py_trees.demos.context_switching),
47

(py_trees.composites.Composite

(py_trees.trees.BehaviourTree

main () (in module py_trees.demos.dot_graphs), 51
main () (in module py_trees.demos.lifecycle), 40
main () (in module py_trees.demos.selector), 54
main () (in module py_trees.demos.sequence), 57
main () (in module py_trees.demos.stewardship), 61

N

Name (class in py_trees.common), 77
NEVER (py_trees.common.ClearingPolicy attribute), 77

initialise () (py_trees.blackboard.CheckBlackboardVatibid_BLACKBOX (py_trees.common.BlackBoxLevel

method), 75

attribute), 77

initialise () (py_trees.blackboard.ClearBlackboardVariable

method), 75

116

Index

py_trees Documentation, Release 0.7.6

O

ON_INITIALISE (py_trees.common.ClearingPolicy at-
tribute), 77

ON_SUCCESS (py_trees.common.ClearingPolicy at-
tribute), 77

OneShot (class in py_trees.decorators), 89

P

Parallel (class in py_trees.composites), 81
ParallelPolicy (class in py_trees.common), 77
Periodic (class in py_trees.behaviours), 71
planning () (in module py_trees.demos.action), 36

post_tick_handler () (in module
py_trees.demos.stewardship), 61
pre_tick_handler () (in module

py_trees.demos.stewardship), 61
prepend_child () (py_trees.composites.Composite

method), 80
print_ascii_tree () (in module py_trees.display),
91

prune_subtree ()
method), 101
py_trees (module), 67
py_trees.behaviour (module), 67
py_trees.behaviours (module), 70
py_trees.blackboard (module), 73
py_trees.common (module), 76
py_trees.composites (module), 78
py_trees.console (module), 85
py_trees.decorators (module), 86
py_trees.demos.action (module), 35
py_trees.demos.blackboard (module), 43
py_trees.demos.context_switching
ule), 46
py_trees.demos.dot_graphs (module), 51
py_trees.demos.lifecycle (module), 39
py_trees.demos.selector (module), 54
py_trees.demos.sequence (module), 57
py_trees.demos.stewardship (module), 60
py_trees.display (module), 90
py_trees.meta (module), 93
py_trees.programs.render (module), 65
py_trees.timers (module), 98
py_trees.trees (module), 99
py_trees.utilities (module), 102
py_trees.visitors (module), 102

R

read_single_keypress () (in
py_trees.console), 86

remove_all_children{()
(py_trees.composites. Composite
80

(py_trees.trees.BehaviourTree

(mod-

module

method),

remove_child()
method), 80
remove_child _by_id()

(py_trees.composites.Composite

(py_trees.composites. Composite method),
80

render_dot_tree () (in module py_trees.display),
92

replace_child () (py_trees.composites.Composite
method), 81

replace_subtree () (py_trees.trees.BehaviourTree
method), 101

run () (py_trees.visitors.DebugVisitor method), 103

run () (py_trees.visitors.SnapshotVisitor method), 103

run () (py_trees.visitors.VisitorBase method), 103

Running (class in py_trees.behaviours), 72

RUNNING (py_trees.common.Status attribute), 77

running_is_failure () (in module py_trees.meta),
96

running_is_success () (in module py_trees.meta),
97

RunningIsFailure (classin py_trees.decorators), 89

RunningIsSuccess (class in py_trees.decorators), 89

S

Selector (class in py_trees.composites), 82

Sequence (class in py_trees.composites), 84

set () (py_trees.blackboard.Blackboard method), 74

SetBlackboardVariable (class in
py_trees.blackboard), 75

setup () (py_trees.behaviour.Behaviour method), 68
setup () (py_trees.composites.Composite method), 81
setup () (py_trees.decorators.Decorator method), 88
setup () (py_trees.demos.action.Action method), 35
setup () (py_trees.demos.lifecycle. Counter method), 40

setup () (py_trees.trees.BehaviourTree method), 101

SnapshotVisitor (class in py_trees.visitors), 103

static_variables () (in module py_trees.utilities),
102

Status (class in py_trees.common), 77

stop () (py_trees.behaviour.Behaviour method), 69

stop () (py_trees.composites.Composite method), 81
stop () (py_trees.composites.Selector method), 83
stop () (py_trees.composites.Sequence method), 84

stop () (py_trees.decorators.Decorator method), 88

string_to_visibility_level ()
(py_trees.common method), 78

stringify_dot_tree() (in
py_trees.display), 93

Success (class in py_trees.behaviours), 72

SUCCESS (py_trees.common.Status attribute), 77

success_1is_failure () (in module py_trees.meta),
97

success_1is_running () (in module py_trees.meta),
97

module

Index

117

py_trees Documentation, Release 0.7.6

SUCCESS_ON_ALL
attribute), 77
SUCCESS_ON_ONE
attribute), 77
SuccessEveryN (class in py_trees.behaviours), 72
SuccessIsFailure (classinpy_trees.decorators), 89
SuccessIsRunning (class in py_trees.decorators), 89

T

terminate () (py_trees.behaviour.Behaviour method),
69

(py_trees.common.ParallelPolicy

(py_trees.common.ParallelPolicy

update () (py_trees.blackboard. CheckBlackboardVariable
method), 75

update () (py_trees.blackboard. WaitForBlackboardVariable
method), 76

update () (py_trees.decorators.Condition method), 87

update () (py_trees.decorators. FailurelsRunning
method), 88

update () (py_trees.decorators.FailurelsSuccess
method), 88

update () (py_trees.decorators.Inverter method), 88

update () (py_trees.decorators.OneShot method), 89

terminate () (py_trees.behaviours.Count method), 70 update () (py_trees.decorators.RunninglsFailure
terminate () (py_trees.blackboard.CheckBlackboardVariable method), 89

method), 75 update () (py_trees.decorators.RunninglsSuccess
terminate () (py_trees.blackboard. WaitForBlackboardVariable =~ method), 89

method), 76 update () (py_trees.decorators.SuccesslsFailure
terminate () (py_trees.decorators.OneShot method), method), 89

89 update () (py_trees.decorators.SuccesslsRunning
terminate () (py_trees.demos.action.Action method), method), 90

35 update () (py_trees.decorators.Timeout method), 90
terminate () (py_trees.demos.context_switching. ContextSgigice () (py_trees.demos.action.Action method), 36

method), 47 update () (py_trees.demos.blackboard.BlackboardWriter
terminate () (py_trees.demos.lifecycle. Counter method), 43

method), 40 update () (py_trees.demos.context_switching. ContextSwitch
terminate () (py_trees.timers.Timer method), 99 method), 47
tick, 31 update () (py_trees.demos.lifecycle.Counter method),

40

tick () (py_trees.behaviour.Behaviour method), 69

(
tick () (py_trees.composites.Chooser method), 79
tick () (py_trees.composites.Parallel method), 82
tick () (py_trees.composites.Selector method), 83
tick () (py_trees.composites.Sequence method), 85
tick () (py_trees.decorators.Decorator method), 88
tick () (py_trees.decorators.OneShot method), 89

(

tick () (py_trees.trees.BehaviourTree method), 101

tick_once () (py_trees.behaviour.Behaviour method),
69

tick_tock () (py_trees.trees.BehaviourTree method),
101

ticking, 31

ticks, 31

Timeout (class in py_trees.decorators), 90

timeout () (in module py_trees.meta), 98

Timer (class in py_trees.timers), 98

tip () (py_trees.behaviour.Behaviour method), 70

tip () (py_trees.composites.Composite method), 81

tip () (py_trees.trees.BehaviourTree method), 102

U

update () (py_trees.behaviour.Behaviour method), 70

update () (py_trees.behaviours.Count method), 71

update () (py_trees.behaviours.Periodic method), 71

update () (py_trees.behaviours.SuccessEveryN
method), 72

update () (py_trees.timers.Timer method), 99

Vv

VisibilityLevel (class in py_trees.common), 77
visit () (py_trees.behaviour.Behaviour method), 70
VisitorBase (class in py_trees.visitors), 103

W

WaitForBlackboardVariable
py_trees.blackboard), 76
which () (in module py_trees.utilities), 102

(class in

118

Index

	Background
	Behaviours
	Composites
	Decorators
	Blackboards
	Trees
	Visualisation
	Surviving the Crazy Hospital
	Terminology
	FAQ
	Demos
	Programs
	Module API
	Changelog
	Indices and tables
	Python Module Index
	Index

